机译:基于MapReduce的并行GEP算法,可在大数据应用中进行有效的功能挖掘
School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;
School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;
School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;
School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;
Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK Key Laboratory of Embedded Systems and Service Computing, Ministry of Education, Tongji University, Shanghai 200092, China;
State Grid Shanxi Electric Power Company, Xi'an 710048, China;
big data; GEP; Hadoop framework; medoid; parallelization;
机译:一种并行MapReduce算法,可以有效地支持高维数据上的项目集挖掘
机译:大数据的高性能计算:基于Hadoop MapReduce框架的事务数据并行频繁项集挖掘算法的性能优化方法
机译:Web使用挖掘中基于Mapreduce的并行数据清除算法
机译:基于MapReduce的FP增长算法并行概率数值数据挖掘。
机译:用于挖掘文本数据库中关联规则的高效顺序和并行算法
机译:大数据:基于MapReduce的并行粒子群优化-反向传播神经网络算法
机译:带有mapreduce框架的并行大数据算法,用于挖掘Twitter数据
机译:在热工水力学超级计算机应用中开发用于数据相关计算的高效并行算法的一些计算挑战