首页> 外文期刊>CONCURRENCY PRACTICE & EXPERIENCE >MapReduce‐based parallel GEP algorithm for efficient function mining in big data applications
【24h】

MapReduce‐based parallel GEP algorithm for efficient function mining in big data applications

机译:基于MapReduce的并行GEP算法,可在大数据应用中进行有效的功能挖掘

获取原文
获取原文并翻译 | 示例

摘要

Gene expression programming (GEP) algorithm is one of the most effective function mining algorithmsin enabling the mathematical equation fitting for the input dataset. However, GEP algorithmencounters low efficiency issue in big data processing due to large overhead in itsevolution when it handles the large‐scale data. In order to solve the issue, this paper presentstwo parallelized GEP algorithms using MapReduce. Based on data separation, the first algorithmaims at speeding up the large‐scale classification. However, it is lack of ability to output the minedequation explicitly. Therefore, based on the further improvements of the first algorithm, the secondparallelized GEP algorithm aims at mining the equation efficiently and also outputs the equationexplicitly and directly. The experimental results show that both algorithms are effective forprocessing large volume of data.
机译:基因表达编程(GEP)算法是最有效的函数挖掘算法之一,可以对输入数据集进行数学方程式拟合。但是,由于GEP算法在处理大规模数据时会产生较大的开销,因此在大数据处理中会遇到效率低下的问题。为了解决这个问题,本文提出了两种使用MapReduce的并行GEP算法。基于数据分离,第一种算法旨在加快大规模分类的速度。但是,缺乏显式输出已开采 r nequation的能力。因此,基于第一种算法的进一步改进,第二种并行化GEP算法的目的是有效地挖掘方程,并明确,直接地输出方程。实验结果表明,两种算法均能有效处理大量数据。

著录项

  • 来源
    《CONCURRENCY PRACTICE & EXPERIENCE》 |2018年第23期|e4379.1-e4379.11|共11页
  • 作者单位

    School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;

    School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;

    School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;

    School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;

    Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK Key Laboratory of Embedded Systems and Service Computing, Ministry of Education, Tongji University, Shanghai 200092, China;

    State Grid Shanxi Electric Power Company, Xi'an 710048, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    big data; GEP; Hadoop framework; medoid; parallelization;

    机译:大数据;GEP;Hadoop框架;类固醇并行化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号