首页> 外文期刊>Concurrency and Computation >Design of damage identification algorithm for mechanical structures based on convolutional neural network
【24h】

Design of damage identification algorithm for mechanical structures based on convolutional neural network

机译:基于卷积神经网络的机械结构损伤识别算法设计

获取原文
获取原文并翻译 | 示例

摘要

Damage identification, location, and estimation of engineering structures are very popularresearch topics in recent years. Structural damage detection technology has been widely used inaerospace, civil engineering, machinery, and nuclear industry. It is a multi-disciplinary and comprehensivetechnology based on damage mechanism, sensor technology, signal analysis technology,computer technology, and convolutional intelligence technology. Compared with the traditionalstructural damage detection methods, this paper mainly studies the theory and application ofstructural damage detection technology based on convolutional neural network. In this paper, thedamage location and damage degree of a frame structure are numerically simulated by the combinedparameter method,which is suitable for structural damage identification. At the same time,the input parameters of the improved convolutional neural network are constructed by a suitablemethod, and the structure damage detection and identification are carried out by using thetrained convolutional neural network.
机译:损伤的识别,定位和工程结构的估计是近年来非常流行的 r n研究主题。结构损伤检测技术已广泛应用于航空航天,土木工程,机械和核工业。它是基于损伤机制,传感器技术,信号分析技术,计算机技术和卷积智能技术的多学科综合技术。与传统的 r n结构损伤检测方法相比,本文主要研究基于卷积神经网络的 r n结构损伤检测技术的理论和应用。本文采用组​​合参数法对框架结构的损伤位置和损伤程度进行了数值模拟,适用于结构损伤识别。同时,通过适当的方法构造改进的卷积神经网络的输入参数,并使用训练的卷积神经网络进行结构损伤的检测和识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号