首页> 外文期刊>Concurrency, practice and experience >Marine bathymetry processing through GPGPU virtualization in high performance cloud computing
【24h】

Marine bathymetry processing through GPGPU virtualization in high performance cloud computing

机译:高性能云计算中通过GPGPU虚拟化进行的海洋测深处理

获取原文
获取原文并翻译 | 示例

摘要

Fast technology development has influenced the widespread use of low-power devices in differentscientific, environmental, and everyday life areas, giving birth to the Internet of Things.In this paper, we focus on the context of marine studies, addressing the problem of marinebathymetry data processing and analysis via pervasive and Internet-connected sensors andlow-power distributed devices.Pervasiveand Internet-connectedlow-powerdevices (as the componentsinvolved in the sensing and processing actions) made diverse and different “things” asa worldwide-distributed system. Given the high complexity of the algorithms involved in thesestudies, which usually involve general-purpose graphic processing unit (GPGPU)computation, it isimpossible for the limited devices to perform the required calculations. To overcome these limitations,in this paper, we propose and implement a vertical application of GVirtuS, the open-sourceGPGPU virtualization and remoting service, for achieving high performance geographical datainterpolation in a high performance cloud computing scenario.We present an innovative implementationby comparing, in terms of performance and accuracy, the inverse distance weightingand kriging interpolation methods in their parallel implementations leveraging on CUDA-enabledGPGPUs.We present a real-world use case related to high-resolution bathymetry interpolationin a crowdsource data context in the Bay of Pozzuoli, Italy.
机译:快速的技术发展影响了低功率设备在不同的 r n n科学,环境和日常生活领域中的广泛使用,从而催生了物联网。 r n本文重点关注海洋研究的背景,通过普及的和互联网连接的传感器和 r 低功耗的分布式设备解决了海洋测深仪数据处理和分析的问题。普及的和互联网连接的低功耗设备(因为组件 r 涉及传感和处理行动)在全球范围内分发了多种多样的“事物”。考虑到这些研究中涉及的算法的高度复杂性,通常涉及通用图形处理单元(GPGPU)计算,因此有限的设备无法执行所需的计算。为了克服这些限制, r n本文中,我们提出并实现了GVirtuS的垂直应用程序,这是开源 r nGPGPU虚拟化和远程处理服务,用于在高性能云中实现高性能地理数据 r n插值通过在性能和准确性方面比较反向距离加权 r n和克里格插值方法在其并行实现中(利用启用了CUDA的 r nGPGPUs),我们提出了一个创新的实现。在意大利波佐利湾的众包数据上下文中与高分辨率测深法插值相关的世界用例。

著录项

  • 来源
    《Concurrency, practice and experience》 |2018年第24期|e4895.1-e4895.15|共15页
  • 作者单位

    Department of Science and Technologies, University of Naples Parthenope, Naples, Italy,Center for Robust Decisionmaking on Climate and Energy Policy, Computation Institute, The University of Chicago, Chicago, Illinois;

    Department of Science and Technologies, University of Naples Parthenope, Naples, Italy;

    Department of Science and Technologies, University of Naples Parthenope, Naples, Italy;

    Department of Science and Technologies, University of Naples Parthenope, Naples, Italy,Center for Robust Decisionmaking on Climate and Energy Policy, Computation Institute, The University of Chicago, Chicago, Illinois;

    Center for Communication, Media and Information Technologies, Aalborg University Copenhagen, Copenhagen, Denmark;

    Department ofMathematics and Applications, University of Naples Federico Ⅱ, Naples, Italy;

    Department of Science and Technologies, University of Naples Parthenope, Naples, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    geographic data interpolation; GPGPU virtualization; high performance computing; IDW; kriging;

    机译:地理数据插值;GPGPU虚拟化;高性能计算;IDW;克里格;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号