首页> 外文期刊>Concurrency and Computation >A static mapping heuristics to map parallel applications to heterogeneous computing systems
【24h】

A static mapping heuristics to map parallel applications to heterogeneous computing systems

机译:静态映射试探法,用于将并行应用程序映射到异构计算系统

获取原文
获取原文并翻译 | 示例

摘要

In order to minimize the execution time of a parallel application running on a heterogeneously distributed computing system, an appropriate mapping scheme is needed to allocate the application tasks to the processors. The general problem of mapping tasks to machines is a well-known NP-hard problem and several heuristics have been proposed to approximate its optimal solution. In this paper we propose a static graph-based mapping algorithm, called Heterogeneous Multi-phase Mapping (HMM), which permits suboptimal mapping of a parallel application onto a heterogeneous computing distributed system by using a local search technique together with a tabu search meta-heuristic. HMM allocates parallel tasks by exploiting the information embedded in the parallelism forms used to implement an application, and considering an affinity parameter, that identifies which machine in the heterogeneous computing system is most suitable to execute a task. We compare HMM with some leading techniques and with an exhaustive mapping algorithm. We also give an example of mapping of two real applications using HMM. Experimental results show that HMM performs well demonstrating the applicability of our approach.
机译:为了最小化在异构分布式计算系统上运行的并行应用程序的执行时间,需要适当的映射方案来将应用程序任务分配给处理器。将任务映射到机器的一般问题是一个众所周知的NP难题,并且已提出了几种启发式方法来近似其最佳解决方案。在本文中,我们提出了一种基于静态图的映射算法,称为异构多相映射(HMM),该算法允许通过使用局部搜索技术和禁忌搜索元数据将并行应用程序次优映射到异构计算分布式系统上。启发式。 HMM通过利用嵌入在用于实现应用程序的并行性形式中的信息并考虑亲和力参数来分配并行任务,该亲和力参数标识异构计算系统中的哪台计算机最适合执行任务。我们将HMM与一些领先技术和详尽的映射算法进行了比较。我们还给出了使用HMM映射两个实际应用程序的示例。实验结果表明,HMM很好地证明了我们方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号