首页> 外文OA文献 >A Static Mapping Heuristic for Mapping Parallel Applications to Heterogeneous Computing Systems
【2h】

A Static Mapping Heuristic for Mapping Parallel Applications to Heterogeneous Computing Systems

机译:用于将并行应用程序映射到异构计算系统的静态映射启发式方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To minimize the execution time of a parallel application running on a heterogeneous computing distributed system, an appropriate mapping scheme to allocate the application tasks to the processors is needed. The general problem of mapping tasks to machines is a well known NP-hard problem and several heuristics have been proposed to approximate its optimal solution. In this paper we propose a static graph-based mapping algorithm, called Heterogeneous Multi-phase Mapping (HMM), that permits a suboptimal mapping of a parallel application onto a heterogeneous computing distributed system by using a local search technique together with a tabu search meta-heuristic. HMM allocates parallel tasks by exploiting the information embedded in the parallelism forms used to implement an application. We compare HMM with three different leading techniques and with an exhaustive mapping algorithm. We also give an example of mapping of a pratical application where HMM verified its usefulness. Experimental results show that HMM performs well demonstrating the applicability of our approach.
机译:为了最小化在异构计算分布式系统上运行的并行应用程序的执行时间,需要一种适当的映射方案来将应用程序任务分配给处理器。将任务映射到机器的一般问题是众所周知的NP难题,并且已提出了几种启发式方法来近似其最佳解决方案。在本文中,我们提出了一种基于静态图的映射算法,称为异构多相映射(HMM),该算法允许通过使用局部搜索技术和禁忌搜索元,将并行应用程序次优映射到异构计算分布式系统上-启发式。 HMM通过利用嵌入在用于实现应用程序的并行性形式中的信息来分配并行任务。我们将HMM与三种不同的领先技术以及详尽的映射算法进行了比较。我们还提供了一个映射实际应用程序的示例,其中HMM验证了其实用性。实验结果表明,HMM很好地证明了我们方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号