首页> 外文期刊>Concurrency and Computation >Parallelization And Scalability Of A Spectral Element Channel Flow Solver For Incompressible Navier-stokes Equations
【24h】

Parallelization And Scalability Of A Spectral Element Channel Flow Solver For Incompressible Navier-stokes Equations

机译:不可压缩的Navier-stokes方程的谱元通道流量解算器的并行性和可伸缩性

获取原文
获取原文并翻译 | 示例

摘要

Direct numerical simulation (DNS) of turbulent flows is widely recognized to demand fine spatial meshes, small timesteps, and very long runtimes to properly resolve the flow field. To overcome these limitations, most DNS is performed on supercomputing machines. With the rapid development of terascale (and, eventually, petascale) computing on thousands of processors, it has become imperative to consider the development of DNS algorithms and parallelization methods that are capable of fully exploiting these massively parallel machines. A highly parallelizable algorithm for the simulation of turbulent channel flow that allows for efficient scaling on several thousand processors is presented. A model that accurately predicts the performance of the algorithm is developed and compared with experimental data. The results demonstrate that the proposed numerical algorithm is capable of scaling well on petascale computing machines and thus will allow for the development and analysis of high Reynolds number channel flows.
机译:湍流的直接数值模拟(DNS)被广泛认可,需要精细的空间网格,较小的时间步长和非常长的运行时间才能正确解析流场。为了克服这些限制,大多数DNS在超级计算机上执行。随着数以万计的处理器上的万亿级(最终达到千万亿级)计算的飞速发展,必须考虑开发能够充分利用这些大规模并行机的DNS算法和并行化方法。提出了一种高度可并行化的算法,用于仿真湍流流,可在数千个处理器上进行有效缩放。开发了可以准确预测算法性能的模型,并将其与实验数据进行比较。结果表明,所提出的数值算法能够在PB级计算机上很好地缩放,因此将允许开发和分析高雷诺数通道流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号