首页> 外文期刊>Concurrency and Computation >Using Parallelization And Hardware Concurrency To Improve The Performance Of A Genetic Algorithm
【24h】

Using Parallelization And Hardware Concurrency To Improve The Performance Of A Genetic Algorithm

机译:利用并行化和硬件并发提高遗传算法的性能

获取原文
获取原文并翻译 | 示例

摘要

Genetic algorithms (GAs) are powerful tools for solving many problems requiring the search of a solution space having both local and global optima. The main drawback for GAs is the long execution time normally required for convergence to a solution. This paper discusses three different techniques that can be applied to GAs to improve overall execution time. A serial software implementation of a GA designed to solve a task scheduling problem is used as the basis for this research. The execution time of this implementation is then improved by exploiting the natural parallelism present in the algorithm using a multiprocessor. Additional performance improvements are provided by implementing the original serial software GA in dedicated reconfigurable hardware using a pipelined architecture. Finally, an advanced hardware implementation is presented in which both pipelining and duplicated hardware modules are used to provide additional concurrency leading to further performance improvements.
机译:遗传算法(GA)是用于解决许多问题的强大工具,这些问题需要搜索具有局部和全局最优解的求解空间。 GA的主要缺点是收敛到解决方案通常需要较长的执行时间。本文讨论了可应用于GA的三种不同技术,以缩短整体执行时间。用于解决任务调度问题的遗传算法的串行软件实现被用作本研究的基础。然后,通过使用多处理器利用算法中存在的自然并行性,可以缩短此实现的执行时间。通过使用流水线体系结构在专用的可重新配置硬件中实施原始串行软件GA,可以提供其他性能改进。最后,介绍了一种高级硬件实现,其中流水线和重复的硬件模块都用于提供额外的并发性,从而进一步提高了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号