首页> 外文期刊>Concurrency and Computation >From computation models to models of provenance: the RWS approach
【24h】

From computation models to models of provenance: the RWS approach

机译:从计算模型到出处模型:RWS方法

获取原文
获取原文并翻译 | 示例

摘要

Scientific workflows often benefit from or even require advanced modeling constructs, e.g. nesting of subworkflows, cycles for executing loops, data-dependent routing, and pipelined execution. In such settings, an often overlooked aspect of provenance takes center stage: a suitable model of provenance (MoP) for scientific workflows should be based upon the underlying model of computation (MoC) used for executing the workflows. We can derive an adequate MoP from a MoC (such as Kahn's process networks) by taking into account the assumptions that a MoC entails, and by recording the observables which it affords. In this way, a MoP captures or at least better approximates 'real' data dependencies for workflows with advanced modeling constructs. As a specific instance, we elaborate on the Read-Write-ReSet model, a simple and flexible MoP suitable for a number of different MoCs.
机译:科学工作流程通常会受益于甚至需要高级建模结构,例如子工作流程的嵌套,执行循环的周期,与数据相关的路由和流水线执行。在这种情况下,出处常常被忽略,成为中心问题:科学工作流的适当出处模型(MoP)应基于用于执行工作流的基础计算模型(MoC)。通过考虑MoC所包含的假设并记录其提供的可观测值,我们可以从MoC(例如Kahn的过程网络)中得出足够的MoP。这样,MoP可以捕获或至少更好地近似具有高级建模构造的工作流的“真实”数据依赖性。作为一个具体实例,我们详细介绍了Read-Write-ReSet模型,它是一种适用于许多不同MoC的简单灵活的MoP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号