首页> 外文期刊>Concurrency and computation: practice and experience >A DDS-based middleware for quality-of-service and high-performance networked robotics
【24h】

A DDS-based middleware for quality-of-service and high-performance networked robotics

机译:基于DDS的中间件,用于服务质量和高性能网络机器人

获取原文
获取原文并翻译 | 示例

摘要

Social robots must adapt to dynamic environments, human interaction partners and challenging new stringent tasks. Their inner software is usually distributed and should be designed and deployed carefully because slight changes in the robot's requirements can have an important impact not only on the existing source code but also on the resulting performance at run-time. This paper proposes an implementation of this inner software using a new lightweight middleware for networked robotics called Nerve. The principal novelty this middleware has with respect to other state-of-the-art approaches is that it guarantees both scalability and QoS, which are key requirements for real-time robotics software. The benefits of Nerve have been proved through its use in two key components of the cognitive system of a social robot: (i) the visual attention mechanism, used to extract relevant data from perceived images; and (ii) a robot learning by imitation control architecture that allows the social robot to be taught by people using natural demonstrations (i.e. using the same communication channels that would be used to teach people). Nerve makes use of existing patterns for networked applications together with the recent Data Distribution Service specification, which is a publish/subscribe standard for real-time and distributed systems that provides a wide set of QoS policies. In this paper, these different QoS policies have been applied carefully to achieve the best performance of the target robot.
机译:社交机器人必须适应动态环境,人类交互伙伴以及挑战性新的严格任务。他们的内部软件通常是分布式的,应该仔细设计和部署,因为机器人要求的细微变化不仅会对现有源代码产生重要影响,而且还会对运行时的最终性能产生重要影响。本文提出了一种使用称为Nerve的网络机器人新轻量级中间件的内部软件的实现。该中间件相对于其他最新方法的主要新颖之处在于,它既保证了可伸缩性又保证了QoS,这是实时机器人软件的关键要求。神经的好处已经通过在社交机器人认知系统的两个关键组件中的使用得到证明:(i)视觉注意力机制,用于从感知图像中提取相关数据; (ii)通过模仿控制体系结构进行的机器人学习,允许社交演示者使用自然示范(即使用与教人们相同的沟通渠道)来教授社交机器人。 Nerve将网络应用程序的现有模式与最新的Data Distribution Service规范结合使用,该规范是实时和分布式系统的发布/订阅标准,它提供了广泛的QoS策略。在本文中,已仔细应用了这些不同的QoS策略,以实现目标机器人的最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号