首页> 外文期刊>Concurrency and computation: practice and experience >A layered classification for malicious function identification and malware detection
【24h】

A layered classification for malicious function identification and malware detection

机译:恶意功能识别和恶意软件检测的分层分类

获取原文
获取原文并翻译 | 示例

摘要

Millions of new malicious programs are produced by the mature industry of malware production. These programs have tremendous challenges on the signature-based antivirus products. Machine learning techniques are applicable for detecting unknown malicious programs without knowing their signatures. In this paper, a layered classification method is developed to detect malwares with a two-layer framework. The low-level-classifier is employed to identify whether the programs perform any malicious functions according to the API-calls of the programs; the up-level-classifier is applied to detect malwares according to the function identification. A hybrid structure called Type-Function, constituting of the classification results of low-level-classifier and up-level-classifier, is proposed to describe the malware. This method is compared with Naive Bayes, decision tree, and boosting using a comprehensive test dataset containing 16,135 malwares and 1800 benign programs. The experiments demonstrate that our method outperforms other algorithms in terms of detection accuracy. Moreover, the Type-Function structure is proved as an unprejudiced and effective method for malware description.
机译:成熟的恶意软件生产行业产生了数百万个新的恶意程序。这些程序对基于签名的防病毒产品具有巨大的挑战。机器学习技术适用于检测未知恶意程序而无需知道它们的签名。本文提出了一种基于两层框架的分层分类方法来检测恶意软件。低级分类器用于根据程序的API调用来识别程序是否执行任何恶意功能;上级分类器用于根据功能标识检测恶意软件。为了描述该恶意软件,提出了一种由类型-功能组成的混合结构,该结构由低级分类器和上级分类器的分类结果组成。将该方法与朴素贝叶斯,决策树以及使用包含16135个恶意软件和1800个良性程序的综合测试数据集进行增强的方法进行了比较。实验表明,我们的方法在检测精度方面优于其他算法。此外,类型功能结构被证明是不偏颇且有效的恶意软件描述方法。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2012年第11期|p.1169-1179|共11页
  • 作者单位

    State Key Laboratory for Manufacturing Systems Engineering, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China;

    State Key Laboratory for Manufacturing Systems Engineering, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China;

    State Key Laboratory for Manufacturing Systems Engineering, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China;

    State Key Laboratory for Manufacturing Systems Engineering, Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    layered classification; network security; malware detection; malicious function identification;

    机译:分层分类;网络安全;恶意软件检测;恶意功能识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号