首页> 外文期刊>Concurrency and Computation >Controlling fairness and task granularity in distributed, online, non-clairvoyant workflow executions
【24h】

Controlling fairness and task granularity in distributed, online, non-clairvoyant workflow executions

机译:在分布式,在线,非透视工作流执行中控制公平性和任务粒度

获取原文
获取原文并翻译 | 示例

摘要

Distributed computing infrastructures are commonly used for scientific computing, and science gatewaysrnprovide complete middleware stacks to allow their transparent exploitation by end users. However, administratingrnsuch systems manually is time consuming and sub-optimal because of the complexity of the executionrnconditions. Algorithms and frameworks aiming at automating system administration must deal with onlinernand non-clairvoyant conditions, where most parameters are unknown and evolve over time. We considerrnthe problem of controlling task granularity and fairness among scientific workflows executed in these conditions.rnWe present two self-managing loops monitoring the fineness, coarseness, and fairness of workflowrnexecutions, comparing these metrics with thresholds extracted from knowledge acquired in previous executionsrnand planning appropriate actions to maintain these metrics to appropriate ranges. Experiments on thernEuropean Grid Infrastructure show that our task granularity control can speed up executions up to a factor ofrn2 and that our fairness control reduces slowdown variability by 3–7 compared with first-come, first-served.rnWe also study the interaction between granularity control and fairness control: our experiments demonstraternthat controlling task granularity degrades fairness but that our fairness control algorithm can compensaternthis degradation.
机译:分布式计算基础结构通常用于科学计算,科学网关提供完整的中间件堆栈,以允许最终用户透明地利用它们。但是,由于执行条件的复杂性,手动管理此类系统既费时又次优。旨在实现系统管理自动化的算法和框架必须处理大多数参数未知且随时间变化的在线和非透视情况。我们考虑了在这种情况下执行的科学工作流程中控制任务粒度和公平性的问题.rn我们提出了两个自我管理循环来监视工作流程的精细性,粗糙性和公平性,将这些指标与从先前执行中获得的知识中提取的阈值进行比较并计划适当的行动将这些指标维持在适当的范围内。欧洲网格基础设施上的实验表明,我们的任务粒度控制可以将执行速度提高到rn2倍,并且与先来先得相比,我们的公平性控制将降低的变率降低了3–7。rn我们还研究了粒度控制之间的交互作用和公平性控制:我们的实验表明,控制任务粒度会降低公平性,但我们的公平性控制算法可以弥补这种下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号