首页> 外文期刊>Concurrency and computation: practice and experience >Generate-map-reduce: An extension to map-reduce to support shared data and recursive computations
【24h】

Generate-map-reduce: An extension to map-reduce to support shared data and recursive computations

机译:Generate-map-reduce:对map-reduce的扩展,以支持共享数据和递归计算

获取原文
获取原文并翻译 | 示例

摘要

It is difficult to express the parallelism present in complex computations by using existing higher levelrnabstractions such as MapReduce and Dryad. These computations include applications from wide variety ofrndomains, like Artificial Intelligence, Decision Tree Algorithms, Association Rule Mining, RecommenderrnSystems, Graph Algorithms, Clustering Algorithms, Compute Intensive Scientific Workflows, OptimizationrnAlgorithms, and so forth. Their execution graphs introduce new challenges in terms of programmerrnexpressibility and runtime performance such as iterative and recursive computations, shared communicationrnmodel, and so forth.We propose an extension to MapReduce, called Generate-Map-Reduce (GMR), targetedrntowards modeling these applications. GMR introduces a new Generate abstraction into the MapReducernframework that captures recursive computations. The runtime also supports iterative jobs and a distributedrncommunication model by using shared data structures. We illustrate recursive computations with GMR byrnmodeling complex applications such as simulated annealing, A* search, and adaptive quadrature computationrnthat require recursive spawning of new tasks to handle variable degree of parallelism. GMR runtimernsupports caching of common data across iterations in memory and local disks.We illustrate how this cachingrnhelps in achieving significant speedup for iterative computations by modeling k-means clustering.
机译:通过使用诸如MapReduce和Dryad之类的现有高级摘要很难表达复杂计算中存在的并行性。这些计算包括来自广泛领域的应用程序,例如人工智能,决策树算法,关联规则挖掘,推荐系统,图算法,聚类算法,计算密集型科学工作流,优化算法等。他们的执行图在程序员的可表达性和运行时性能方面提出了新的挑战,例如迭代和递归计算,共享的通信模型等。我们建议对MapReduce进行扩展,称为Generate-Map-Reduce(GMR),以对这些应用程序进行建模。 GMR在MapReducernframework中引入了一个新的Generate抽象,以捕获递归计算。运行时还通过使用共享数据结构来支持迭代作业和分布式通信模型。我们通过建模复杂的应用程序(例如模拟退火,A *搜索和自适应正交计算)来说明GMR的递归计算,这些应用程序需要递归产生新任务以处理可变的并行度。 GMR运行时支持在内存和本地磁盘中的各个迭代之间缓存公共数据。我们说明了这种缓存如何通过对k-means聚类进行建模来帮助实现迭代计算的显着加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号