首页> 外文期刊>Concurrency and computation: practice and experience >High-accuracy hierarchical parallel technique for hidden Markov model-based 3D magnetic resonance image brain segmentation
【24h】

High-accuracy hierarchical parallel technique for hidden Markov model-based 3D magnetic resonance image brain segmentation

机译:基于隐马尔可夫模型的3D磁共振图像脑分割的高精度分层并行技术

获取原文
获取原文并翻译 | 示例

摘要

Scientific applications represent a dominant sector of compute-intensive applications. Using massively parallelrnprocessing systems increases the feasibility to automate such applications because of the cooperationrnamong multiple processors to perform the designated task. This paper proposes a parallel hidden Markovrnmodel (HMM) algorithm for 3D magnetic resonance image brain segmentation using two approaches. Inrnthe first approach, a hierarchical/multilevel parallel technique is used to achieve high performance for thernrunning algorithm. This approach can speed up the computation process up to 7.8u0001 compared with a serialrnrun. The second approach is orthogonal to the first and tries to help in obtaining a minimum error for 3Drnmagnetic resonance image brain segmentation using multiple processes with different randomization pathsrnfor cooperative fast minimum error convergence. This approach achieves minimum error level for HMMrntraining not achievable by the serial HMM training on a single node. Then both approaches are combinedrnto achieve both high accuracy and high performance simultaneously. For 768 processing nodes of a BluernGene system, the combined approach, which uses both methods cooperatively, can achieve high-accuracyrnHMM parameters with 98% of the error level and 2.6u0001 speedup compared with the pure accuracy-orientedrnapproach alone.
机译:科学应用程序代表着计算密集型应用程序的主导领域。使用大规模并行处理系统增加了自动化此类应用程序的可行性,这是因为多个处理器之间的协作可以执行指定的任务。本文提出了一种使用两种方法对3D磁共振图像进行脑分割的并行隐马尔可夫模型(HMM)算法。在第一种方法中,使用分层/多级并行技术来实现运行算法的高性能。与serialrnrun相比,此方法可以将计算过程加速到7.8u0001。第二种方法与第一种方法正交,并尝试使用具有不同随机路径的多个过程来帮助获得3D磁共振图像脑部分割的最小误差,以实现协作快速最小误差收敛。对于在单个节点上进行串行HMM训练无法实现的HMMrntraining,此方法可实现最小错误级别。然后将这两种方法结合起来,可以同时实现高精度和高性能。对于BluernGene系统的768个处理节点,相较于单纯的基于精度的方法,结合使用这两种方法的组合方法可以实现具有98%的错误级别和2.6u0001加速的高精度rnHMM参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号