首页> 外文期刊>Concurrency and computation: practice and experience >Performance and energy aware scheduling simulator for HPC:evaluating different resource selection methods
【24h】

Performance and energy aware scheduling simulator for HPC:evaluating different resource selection methods

机译:HPC的性能和能耗感知调度模拟器:评估不同的资源选择方法

获取原文
获取原文并翻译 | 示例

摘要

Today, in an energy-aware society, job scheduling is becoming an important task for computer engineersrnand system analysts that may lead to a performance per Watt trade-off of computing infrastructures. Thus,rnnew algorithms, and a simulator of computing environments, may help information and communicationsrntechnology and data center managers to make decisions with a solid experimental basis. There are severalrnsimulators that try to address performance and, somehow, estimate energy consumption, but there are nonernin which the energy model is based on benchmark data that have been countersigned by independent bodiesrnsuch as the Standard Performance Evaluation Corporation. This is the reason why we have implemented arnperformance and energy-aware scheduling (PEAS) simulator for high-performance computing. Furthermore,rnto evaluate the simulator, we propose an implementation of the non-dominated sorting genetic algorithm-IIrn(NSGA-II) algorithm, a fast and elitist multiobjective genetic algorithm, for the resource selection. With thernhelp of the PEAS simulator, we have studied if it is possible to provide an intelligent job allocation policyrnthat may be able to save energy and time without compromising performance. The results of our simulationsrnshow a great improvement in response time and power consumption. In most of the cases, NSGA-II performsrnbetter than other ‘intelligent’ algorithms like multiobjective heterogeneous earliest finish time and clearlyrnoutperforms the first-fit algorithm. We demonstrate the usefulness of the simulator for this type of studiesrnand conclude that the superior behavior of multiobjective algorithms makes them recommended for use inrnmodern scheduling systems.
机译:如今,在一个充满能源意识的社会中,作业调度已成为计算机工程师和系统分析师的一项重要任务,这可能导致计算基础架构的每瓦性能折衷。因此,新的算法以及计算环境的模拟器可以帮助信息和通信技术以及数据中心管理人员在坚实的实验基础上做出决策。有几种仿真器试图解决性能问题,并以某种方式估算能耗,但也有nonernin,其能量模型基于基准数据,这些基准数据已由独立机构(例如标准性能评估公司)签署。这就是为什么我们为高性能计算实现了神经性能和能量感知调度(PEAS)模拟器的原因。此外,为了评估模拟器,我们提出了一种非支配排序遗传算法-IIrn(NSGA-II)算法的实现方法,该算法是一种快速,精英的多目标遗传算法,用于资源选择。在PEAS模拟器的帮助下,我们研究了是否有可能提供一种智能的作业分配策略,该策略可以在不影响性能的情况下节省能源和时间。仿真结果表明响应时间和功耗都有了很大的提高。在大多数情况下,NSGA-II的性能要优于其他“智能”算法,例如多目标异构最早完成时间,并且明显优于“最先拟合”算法。我们证明了模拟器对于此类研究的有用性,并得出结论,多目标算法的优越行为使其推荐用于现代调度系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号