首页> 外文期刊>Concurrency and computation: practice and experience >Designing a novel linear-time graph kernel for semantic link network
【24h】

Designing a novel linear-time graph kernel for semantic link network

机译:设计一种新型的语义链接网络线性时间图内核

获取原文
获取原文并翻译 | 示例

摘要

Graph is an efficient tool for representing structured data such as proteins, molecular compounds, and socialrnnetworks. Graph kernel is a technique to measure the similarity between graphs. However, existing graphrnkernels still have several limitations: (1) semantics on link is ignored; (2) node is associated with single label;rn(3) most graph kernels require more than cubic time, which is still computationally expensive; and, (4) therernis seldom consideration of handling the graph comparison when the number of node types becomes huge. Inrnthis paper, we utilize semantic link network (SLN) to represent complex structured data with richer semanticrninformation. Topic model is employed for dimension reduction and tagging each node with multiple labels.rnAnd a novel linear-time graph kernel for SLN is designed to calculate the similarity between two SLNs. Thisrnwork remedies the limitations of the conventional graph kernels. The effectiveness and efficiency of thisrnapproach are evaluated by the document classification task on public corpora. Empirical results demonstraternthat the proposed method can achieve better performance than the traditional topicmodel-based classificationrnapproach.
机译:Graph是表示结构化数据(例如蛋白质,分子化合物和社会网络)的有效工具。图内核是一种测量图之间相似度的技术。但是,现有的图形内核仍然存在一些局限性:(1)链接上的语义被忽略; (2)节点与单个标签关联; rn(3)大多数图内核需要的时间超过立方时间,这在计算上仍然很昂贵; (4)当节点类型的数量变大时,很少考虑处理图比较。在本文中,我们利用语义链接网络(SLN)来表示具有更丰富语义信息的复杂结构化数据。采用主题模型进行降维,并在每个节点上标注多个标签。设计了一种新型的SLN线性时间图核,以计算两个SLN之间的相似度。这项工作弥补了传统图形内核的局限性。该方法的有效性和效率由公共语料库上的文档分类任务评估。实验结果表明,该方法比传统的基于主题模型的分类方法具有更好的性能。

著录项

  • 来源
  • 作者单位

    Semantic Grid Lab, School of Computer and Information Science, Southwest University, 400715, Chongqing, China;

    Semantic Grid Lab, School of Computer and Information Science, Southwest University, 400715, Chongqing, China;

    Semantic Grid Lab, School of Computer and Information Science, Southwest University, 400715, Chongqing, China;

    Semantic Grid Lab, School of Computer and Information Science, Southwest University, 400715, Chongqing, China;

    Semantic Grid Lab, School of Computer and Information Science, Southwest University, 400715, Chongqing, China Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China Nanjing University of Posts and Telecommunications, 210003, Nanjing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    semantic link network; latent Dirichlet allocation; neighborhood hash; graph kernel;

    机译:语义链接网络;潜在的狄利克雷分配邻居哈希图核;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号