首页> 外文期刊>Concurrency and computation: practice and experience >Adaptive method to support social-based mobile networks using a pagerank approach
【24h】

Adaptive method to support social-based mobile networks using a pagerank approach

机译:使用Pagerank方法支持基于社交的移动网络的自适应方法

获取原文
获取原文并翻译 | 示例

摘要

Opportunistic networks are mobile networks that rely on the store-carry-and-forward paradigm, usingrncontacts between nodes to opportunistically transfer data. For this reason, traditional routing mechanismsrnare no longer suitable. The use of additional routing criterion, such as social information about nodes, canrnincrease the probability of successful message delivery. Popularity of a node, another important routing criterion,rncan be inferred using the betweenness centrality, meaning the number of times the node is on thernshortest path between any other two nodes in the social graph. However, computing the betweenness centralityrnis impossible in practice, especially when connectivity between individuals is transient, and each nodernhas only a local view of the entire network.We propose a fundamental rethinking, where nodes and not pathsrnare the observation focus. In our approach, we compute the probability of a node to participate in a path formationrn(e.g., the probability of a node to lead to the next popular path).We present our solution, which takesrninspiration from the PageRank approach, and present an algorithm to compute and update the popularityrnof nodes using the probability of each node to be used as carrier for random messages traversing the network.rnWe demonstrate that this approach is highly robust, numerical insensitive to errors, and converges fast,rnmeaning it can be easily adopted in resource-constraint environments formed between highly mobile wirelessrndevices. Our experimental results sustain our empirical observations for various case studies.
机译:机会网络是依赖于存储-转发-范式的移动网络,它使用节点之间的接触来机会性地传输数据。因此,传统的路由机制不再适用。使用其他路由标准,例如有关节点的社会信息,可以增加成功传递消息的可能性。节点的流行性是另一个重要的路由标准,可以使用中介性中心性来推断,这意味着该节点位于社交图中任何其他两个节点之间的最短路径上的次数。但是,计算中间性中心值在实践中是不可能的,尤其是当个人之间的连接是瞬态的,并且每个节点只有整个网络的局部视图时。我们提出了一个基本的重新思考,其中节点而不是路径是观察的重点。在我们的方法中,我们计算节点参与路径形成的概率(例如,节点通向下一条流行路径的概率)。我们提出了从PageRank方法中获得启发的解决方案,并提出了一种算法使用每个节点作为随机消息遍历网络的载体的概率来计算和更新流行度节点。rn我们证明了该方法具有高度鲁棒性,对错误不敏感的数值,并且收敛速度快,这意味着可以轻松地在网络中采用该方法。在高度移动的无线设备之间形成了资源受限的环境。我们的实验结果支持了各种案例研究的经验观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号