首页> 外文期刊>Concurrency and computation: practice and experience >Dynamic resource demand prediction and allocation in multi-tenant service clouds‡
【24h】

Dynamic resource demand prediction and allocation in multi-tenant service clouds‡

机译:多租户服务云中的动态资源需求预测和分配‡

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is emerging as an increasingly popular computing paradigm, allowing dynamic scaling of resources available to users as needed. This requires a highly accurate demand prediction and resource allocation methodology that can provision resources in advance, thereby minimizing the virtual machine downtime required for resource provisioning. In this paper, we present a dynamic resource demand prediction and allocation framework in multi-tenant service clouds. The novel contribution of our proposed framework is that it classifies the service tenants as per whether their resource requirements would increase or not; based on this classification, our framework prioritizes prediction for those service tenants in which resource demand would increase, thereby minimizing the time needed for prediction. Furthermore, our approach adds the service tenants to matched virtual machines and allocates the virtual machines to physical host machines using a best-fit heuristic approach. Performance results demonstrate how our best-fit heuristic approach could efficiently allocate virtual machines to hosts so that the hosts are utilized to their fullest capacity. Copyright © 2016 John Wiley & Sons, Ltd.
机译:云计算正在成为一种越来越流行的计算范例,可以根据需要动态扩展用户可用的资源。这就需要可以提前供应资源的高精度需求预测和资源分配方法,从而最大程度地减少资源供应所需的虚拟机停机时间。在本文中,我们提出了一种多租户服务云中的动态资源需求预测和分配框架。我们提出的框架的新颖之处在于,它根据服务租户的资源需求是否增加来对其进行分类;基于此分类,我们的框架优先考虑那些资源需求将增加的服务租户的预测,从而最大程度地减少了预测所需的时间。此外,我们的方法将服务租户添加到匹配的虚拟机,并使用最适合的启发式方法将虚拟机分配给物理主机。性能结果证明了我们最适合的启发式方法如何有效地将虚拟机分配给主机,以便充分利用主机的容量。版权所有©2016 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号