首页> 外文期刊>Concurrency and computation: practice and experience >Practical parallel AES algorithms on cloud for massive users and their performance evaluation
【24h】

Practical parallel AES algorithms on cloud for massive users and their performance evaluation

机译:面向大量用户的云上实用的并行AES算法及其性能评估

获取原文
获取原文并翻译 | 示例

摘要

Many e-business or social network servers have been constructed on cloud. On such open environments, private data of massive users have to be protected by encrypting, such as using Advanced Encryption Standard (AES), and furthermore, this process must be finished in a short time for users' better experience. This gives huge pressure on cloud servers, especially common servers, such as web servers. We urgently need an inexpensive and highly efficient method to relieve cloud servers' pressure. Fortunately, many cores of a graphics processing unit (GPU) can undertake this hard mission because of stronger computing power and lower price. The GPU environments can be virtualized on demand by cloud through the vCUDA technology. Of course, for those clouds not equipped with a GPU, a central processing unit (CPU) can still work as multithreads in parallel. Thus, in a cloud, AES can be parallelized using many cores of a GPU or multicores of a CPU with high efficiency and low cost. For typical cloud applications, such as web services, there are massive users and each one has short plaintext. If we simply parallelize AES in such an application, we cannot obtain better performance because of the GPU's extra data transferring cost. Thus, we coalesce the massive users' data and cut these data into same-length slices for improving the performance of parallel AES as much as possible. So we design six parallel AES algorithms using GPU parallelism or CPU parallelism, which differ in parallel scope and whether data are coalesced or cut to slices. Specifically, they are coalescent and sliced GPU (GCS), coalescent and unsliced GPU, uncoalescent GPU, coalescent and sliced CPU, coalescent and unsliced CPU, and uncoalescent CPU. Moreover, we implement them on two representative platforms and evaluate their performance. Through comparing their performance, GCS has the best performance among these algorithms. In a cloud with Nvidia GPUs, GCS is a more powerful algorithm for massive users' data encrypting, relatively. Copyright © 2015 John Wiley & Sons, Ltd.
机译:许多电子商务或社交网络服务器已在云上构建。在这样的开放环境中,必须通过加密(例如使用高级加密标准(AES))来保护海量用户的私人数据,此外,必须在短时间内完成此过程,以使用户获得更好的体验。这给云服务器,尤其是普通服务器(例如Web服务器)带来了巨大压力。我们迫切需要一种廉价且高效的方法来缓解云服务器的压力。幸运的是,由于强大的计算能力和较低的价格,图形处理单元(GPU)的许多内核可以承担这项艰巨的任务。可以通过vCUDA技术按需虚拟化GPU环境。当然,对于那些没有配备GPU的云,中央处理器(CPU)仍可以并行运行为多线程。因此,在云中,可以使用GPU的许多核或CPU的多核以高效率和低成本并行化AES。对于典型的云应用程序,例如Web服务,有大量的用户,每个用户都有简短的纯文本。如果仅在此类应用程序中并行化AES,由于GPU的额外数据传输成本,我们将无法获得更好的性能。因此,我们将大量用户的数据合并在一起,并将这些数据切成相同长度的切片,以尽可能提高并行AES的性能。因此,我们使用GPU并行性或CPU并行性设计了六种并行AES算法,这两种并行算法在并行范围以及数据是合并还是分割成片方面都不同。具体来说,它们是合并和切片GPU(GCS),合并和未切片GPU,合并的GPU,合并和切片CPU,合并和未切片CPU和合并的CPU。此外,我们在两个有代表性的平台上实施它们并评估其性能。通过比较它们的性能,GCS在这些算法中具有最佳性能。在具有Nvidia GPU的云中,相对而言,GCS是一种用于海量用户数据加密的更强大的算法。版权所有©2015 John Wiley&Sons,Ltd.

著录项

  • 来源
  • 作者单位

    Hunan University College of Computer Science and Electronic Engineering Changsha China;

    Hunan University National Supercomputing Center in Changsha Changsha China;

    Hunan University College of Computer Science and Electronic Engineering Changsha China;

    Hunan University National Supercomputing Center in Changsha Changsha China;

    Hunan University College of Computer Science and Electronic Engineering Changsha China;

    Hunan University National Supercomputing Center in Changsha Changsha China;

    Hunan University College of Computer Science and Electronic Engineering Changsha China;

    Hunan University National Supercomputing Center in Changsha Changsha China;

    State University of New York Department of Computer Science New Paltz NY USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Advanced Encryption Standard; cloud; coalescent; CPU parallelism; GPU parallelism; performance evaluation; slice;

    机译:高级加密标准;云;融合;CPU并行性;GPU并行性;性能评估;切片;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号