首页> 外文期刊>Concurrency and computation: practice and experience >Parallel social network mining for interesting ‘following’ patterns
【24h】

Parallel social network mining for interesting ‘following’ patterns

机译:并行社交网络挖掘以获取有趣的“跟随”模式

获取原文
获取原文并翻译 | 示例

摘要

Social networking sites (e.g., Facebook, Google+, and Twitter) have become popular for sharing valuable knowledge and information among social entities (e.g., individual users and organizations), who are often linked by some interdependency such as friendship. As social networking sites keep growing, there are situations in which a user wants to find those frequently followed groups of social entities so that he can follow the same groups. In this article, we present (i) a space-efficient bitwise data structure for capturing interdependency among social entities; (ii) a time-efficient data mining algorithm that makes the best use of our proposed data structure for serial discovery of groups of frequently followed social entities; and (iii) another time-efficient data mining algorithm for concurrent computation and discovery of groups of frequently followed social entities in parallel so as to handle high volumes of social network data. Evaluation results show the efficiency and practicality of our data structure and social network data mining algorithms. Copyright © 2016 John Wiley & Sons, Ltd.
机译:社交网站(例如,Facebook,Google +和Twitter)因在社交实体(例如,个人用户和组织)之间共享有价值的知识和信息而变得流行,这些社交实体通常通过诸如友谊之类的相互依赖关系进行链接。随着社交网站的不断发展,在某些情况下,用户希望找到那些经常关注的社交实体组,以便他可以关注相同的组。在本文中,我们提出(i)一种空间高效的按位数据结构,用于捕获社会实体之间的相互依赖性; (ii)一种节省时间的数据挖掘算法,该算法可充分利用我们提出的数据结构来顺序发现频繁跟踪的社交实体群组; (iii)另一种省时的数据挖掘算法,用于并行地并行计算和发现频繁跟踪的社交实体组,以便处理大量社交网络数据。评估结果表明我们的数据结构和社交网络数据挖掘算法的有效性和实用性。版权所有©2016 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号