首页> 外文期刊>Concurrency and computation: practice and experience >FRP: a fast resource placement algorithm in distributed cloud computing platform
【24h】

FRP: a fast resource placement algorithm in distributed cloud computing platform

机译:FRP:分布式云计算平台中的一种快速资源放置算法

获取原文
获取原文并翻译 | 示例

摘要

We consider a large-scale online service system of placing resources geographically distributed over multiple regional cloud data centers. Service providers need to place the resources in these regions so as to maximize profit, accounting for demand granting revenues minus resource placement costs. The challenge is how to optimally place these resources to fulfill varying demands (e.g., multidimensional and stochastic demands) among these cloud data centers. Considering demand stochasticity will significantly increase time complexity of resource placement algorithm, resulting in inefficiency when handling a large number of resources. We propose a fast resource placement algorithm (FRP) to obtain the maximum resource revenue from distributed cloud systems. Experiments show that in scenarios with general settings, FRP can achieve up to 99.2% revenue of existed best solution while reducing execution time by two orders of magnitude. Therefore, FRP is an effective supplement to existing algorithms under time-tense scheduling scenarios with a large number of resources. Copyright © 2015 John Wiley & Sons, Ltd.
机译:我们考虑了一个大型在线服务系统,该系统将资源地理分布在多个区域云数据中心上。服务提供商需要将资源放置在这些区域中,以使利润最大化(考虑到需求授予收入减去资源放置成本)。挑战在于如何最佳地放置这些资源以满足这些云数据中心之间变化的需求(例如多维需求和随机需求)。考虑到需求随机性将大大增加资源放置算法的时间复杂度,从而导致在处理大量资源时效率低下。我们提出一种快速资源放置算法(FRP),以从分布式云系统中获得最大的资源收益。实验表明,在具有常规设置的方案中,FRP可以实现现有最佳解决方案收益的99.2%,同时将执行时间减少两个数量级。因此,在具有大量资源的时态调度情况下,FRP是对现有算法的有效补充。版权所有©2015 John Wiley&Sons,Ltd.

著录项

  • 来源
  • 作者单位

    Henan University of Technology College of Information Science and Engineering Zhengzhou China;

    Henan University of Technology College of Information Science and Engineering Zhengzhou China;

    University of Electronic Science and Technology of China Sichuan Province Key Laboratory of Network and Data Security Chengdu China;

    Henan University of Technology College of Information Science and Engineering Zhengzhou China;

    University of Electronic Science and Technology of China Sichuan Province Key Laboratory of Network and Data Security Chengdu China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    resource placement; stochastic demand; cloud computing;

    机译:资源配置;随机需求;云计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号