首页> 外文期刊>Concurrency and computation: practice and experience >TomusBlobs: scalable data-intensive processing on Azure clouds
【24h】

TomusBlobs: scalable data-intensive processing on Azure clouds

机译:TomusBlobs:Azure云上可扩展的数据密集型处理

获取原文
获取原文并翻译 | 示例

摘要

The emergence of cloud computing has brought the opportunity to use large-scale compute infrastructures for a broader and broader spectrum of applications and users. As the cloud paradigm gets attractive for the ‘elasticity’ in resource usage and associated costs (the users only pay for resources actually used), cloud applications still suffer from the high latencies and low performance of cloud storage services. As Big Data analysis on clouds becomes more and more relevant in many application areas, enabling high-throughput massive data processing on cloud data becomes a critical issue, as it impacts the overall application performance. In this paper, we address this challenge at the level of cloud storage. We introduce a concurrency-optimized data storage system (called TomusBlobs), which federates the virtual disks associated to the Virtual Machines running the application code on the cloud. We demonstrate the performance benefits of our solution for efficient data-intensive processing by building an optimized prototype MapReduce framework for Microsoft's Azure cloud platform on the basis of TomusBlobs. Finally, we specifically address the limitations of state-of-the-art MapReduce frameworks for reduce-intensive workloads, by proposing MapIterativeReduce as an extension of the MapReduce model. We validate the aforementioned contributions through large-scale experiments with synthetic benchmarks and with real-world applications on the Azure commercial cloud by using resources distributed across multiple data centers; they demonstrate that our solutions bring substantial benefits to data-intensive applications compared with approaches relying on state-of-the-art cloud object storage. Copyright © 2013 John Wiley & Sons, Ltd.
机译:云计算的出现带来了将大规模计算基础架构用于越来越广泛的应用程序和用户的机会。随着云范例吸引了资源使用和相关成本中的“弹性”(用户只为实际使用的资源付费),云应用仍然遭受云存储服务的高延迟和低性能的困扰。随着对云的大数据分析在许多应用领域中越来越重要,对云数据进行高吞吐量的海量数据处理成为一个关键问题,因为这会影响整体应用程序性能。在本文中,我们在云存储级别解决了这一挑战。我们引入了并发优化的数据存储系统(称为TomusBlobs),该系统联合了与在云上运行应用程序代码的虚拟机关联的虚拟磁盘。通过在TomusBlobs的基础上为Microsoft的Azure云平台构建优化的原型MapReduce框架,我们展示了我们的解决方案对于高效数据密集型处理的性能优势。最后,我们通过提出MapIterativeReduce作为MapReduce模型的扩展,专门解决了最新的MapReduce框架在减少密集型工作负载方面的局限性。通过使用分布在多个数据中心之间的资源,我们通过使用合成基准和Azure商业云上的实际应用程序的大规模实验来验证上述贡献。他们证明,与依赖最新的云对象存储的方法相比,我们的解决方案为数据密集型应用程序带来了实质性的好处。版权所有©2013 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号