首页> 外文期刊>Concurrency, practice and experience >Robust human detection and localization in security applications
【24h】

Robust human detection and localization in security applications

机译:在安全应用程序中进行可靠的人工检测和本地化

获取原文
获取原文并翻译 | 示例

摘要

Human detection and localization has attracted much attention in security applications because of the increasing demand of safety and security in different environments, including surveillance systems, secure access control, person recognition, border monitoring, preventing criminal acts, intrusion detection, alarm monitoring, and so on. This article proposes a robust approach for human detection and localization by analyzing and matching corresponding facial features extracted from video sequences. The proposed technique captures the video scenes using a stereo system consisting of two cameras: left and right cameras with similar intrinsic parameters. The system first tracks the human by detecting the face area from the video scenes using an efficient fuzzy face detection algorithm. To localize the human position, the depth information is computed from the extracted face images by using a robust stereo matching algorithm. A neural network is used to match the correspondence pixels between the left and the right face images. Experimental evaluation demonstrates the competence and robustness of the proposed method. The low computation time required for the detection and localization of human objects compared with other methods raises its suitability toward its use in real-time applications.
机译:由于在不同环境中对安全性和安全性的需求不断增加,因此人类检测和本地化在安全应用中引起了广泛关注,包括监视系统,安全访问控制,人员识别,边界监视,防止犯罪行为,入侵检测,警报监视等。上。本文通过分析和匹配从视频序列中提取的相应面部特征,提出了一种用于人体检测和定位的可靠方法。所提出的技术使用由两个摄像机组成的立体声系统捕获视频场景:具有相似固有参数的左右摄像机。该系统首先通过使用有效的模糊面部检测算法从视频场景中检测面部区域来跟踪人。为了定位人的位置,通过使用鲁棒的立体匹配算法从提取的面部图像计算深度信息。使用神经网络来匹配左右脸图像之间的对应像素。实验评估证明了该方法的能力和鲁棒性。与其他方法相比,检测和定位人体目标所需的计算时间短,从而使其更适合在实时应用中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号