首页> 外文期刊>Concurrency, practice and experience >Contextual Spaces Re-Ranking: accelerating the Re-sort Ranked Lists step on heterogeneous systems
【24h】

Contextual Spaces Re-Ranking: accelerating the Re-sort Ranked Lists step on heterogeneous systems

机译:上下文空间重新排序:加快异构系统上的“重新排序列表”步骤

获取原文
获取原文并翻译 | 示例

摘要

Re-ranking algorithms have been proposed to improve the effectiveness of content-based image retrievalrnsystems by exploiting contextual information encoded in distance measures and ranked lists. In this paper,rnwe show how we improved the efficiency of one of these algorithms, called Contextual Spaces Re-rnRanking (CSRR). One of our approaches consists in parallelizing the algorithm with OpenCL to use therncentral and graphics processing units of an accelerated processing unit. The other is to modify the algorithmrnto a version that, when compared with the original CSRR, not only reduces the total running timernof our implementations by a median of 1:6u0002 but also increases the accuracy score in most of our testrncases. Combining both parallelization and algorithm modification results in a median speedup of 5:4u0002rnfrom the original serial CSRR to the parallelized modified version. Different implementations for CSRR’srnRe-sort Ranked Lists step were explored as well, providing insights into graphics processing unit sorting,rnthe performance impact of image descriptors, and the trade-offs between effectiveness and efficiency.
机译:已经提出了重新排序算法,以通过利用距离度量和排名列表中编码的上下文信息来提高基于内容的图像检索系统的有效性。在本文中,我们展示了如何提高这些算法之一的效率,即上下文空间重排序(CSRR)。我们的方法之一是将算法与OpenCL并行化,以使用加速处理单元的中央和图形处理单元。另一种是将算法修改为一个版本,与原始CSRR相比,不仅将我们的实现的总运行时间减少了1:6u0002,而且在大多数测试案例中都提高了准确性得分。将并行化和算法修改结合在一起,可使原始串行CSRR到并行化修改版本的平均速度提高5:4u0002rn。还探索了CSRR的“排序排序列表”步骤的不同实现方式,从而提供了对图形处理单元排序,图像描述符的性能影响以及有效性和效率之间的权衡的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号