首页> 外文期刊>Concurrency and Computation >Bypassing system calls–based intrusion detection systems
【24h】

Bypassing system calls–based intrusion detection systems

机译:绕过基于系统调用的入侵检测系统

获取原文
获取原文并翻译 | 示例

摘要

Machine learning augments today's intrusion detection system (IDS) capability to cope with unknown malware. However, if an attacker gains partial knowledge about the IDS' classifier, he can create a modified version of his malware, which can evade detection. In this article we present an IDS on the basis of various classifiers using system calls, executed by the inspected code as features. We then present a camouflage algorithm that is used to modify malicious code to be classified as benign, while preserving the code's functionality, for decision tree and random forest classifiers. We also present transformations to the classifier's input, to prevent this camouflage - and a modified camouflage algorithm that overcomes those transformations. Our research shows that it is not enough to provide a decision tree based classifier with a large training set to counter malware. One must also be aware of the possibility that the classifier would be fooled by a camouflage algorithm, and try to counter such an attempt with techniques such as input transformation or training set updates.
机译:机器学习增强了当今的入侵检测系统(IDS)的能力,可以应对未知的恶意软件。但是,如果攻击者获得了有关IDS分类器的部分知识,则他可以创建其恶意软件的修改版本,从而可以逃避检测。在本文中,我们基于使用系统调用的各种分类器来提供IDS,这些IDS由受检查的代码作为特征执行。然后,我们提出一种伪装算法,用于将恶意代码修改为分类为良性的恶意代码,同时保留代码的功能,以用于决策树和随机森林分类器。我们还提出了对分类器输入的转换,以防止这种伪装-以及克服了这些变换的改进的伪装算法。我们的研究表明,仅提供基于决策树的分类器并提供大量培训来对抗恶意软件是不够的。还必须意识到伪装算法会欺骗分类器的可能性,并尝试使用诸如输入变换或训练集更新之类的技术来应对这种尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号