首页> 外文期刊>Concurrency and computation: practice and experience >An OpenCL-accelerated parallel immunodominance clone selectionrnalgorithm for feature selection
【24h】

An OpenCL-accelerated parallel immunodominance clone selectionrnalgorithm for feature selection

机译:用于特征选择的OpenCL加速并行免疫优势克隆选择算法

获取原文
获取原文并翻译 | 示例

摘要

Immunodominance clone selection algorithm (ICSA) is a robust and effective metaheuristic method forrnfeature selection problem. However, ICSA is usually slow in finding the optimal solution. In this paper,rnwe propose a parallel immunodominance clone selection algorithm (PICSA) on Graphics Processing Unitrn(GPU) to improve the speedup of ICSA for feature selection problem. The parallel program can considerablyrnaccelerate the feature selection operator. The immunodominance operator, which efficiently connects thernlocal and global information, makes the algorithm able to jump out of the local optimum easily and obtainrnthe global optimum. When comparing with other parallel languages, Open Computing Language (OpenCL)rnhas advantages both in efficiency and portability. Therefore, we use OpenCL to implement this algorithm onrnIntel many integrated core and different GPU platforms. Experiment results obtained using highdimensionalrnUCI machine learning and image texture datasets demonstrate that the PICSA algorithm allowsrnone to achieve good acceleration ratio while maintaining similar classification accuracy to serial ICSArnprogram. Besides, the OpenCL-based implementation of PICSA shows good portability on many integratedrncore and different GPU platforms as well.
机译:免疫优势克隆选择算法(ICSA)是一种针对特征选择问题的健壮有效的元启发式方法。但是,ICSA通常很难找到最佳解决方案。本文提出了一种基于图形处理单元(GPU)的并行免疫优势克隆选择算法(PICSA),以提高ICSA特征选择问题的速度。并行程序可以极大地加速功能选择运算符。免疫支配算子可以有效地连接局部信息和全局信息,使算法能够轻松跳出局部最优值并获得全局最优值。与其他并行语言相比,开放计算语言(OpenCL)在效率和可移植性上均具有优势。因此,我们使用OpenCL在Intel许多集成核心和不同GPU平台上实现此算法。使用高维rnUCI机器学习和图像纹理数据集获得的实验结果表明,PICSA算法可以使rnone获得良好的加速比,同时保持与串行ICSArn程序相似的分类精度。此外,基于OpenCL的PICSA实现在许多集成内核和不同GPU平台上也显示出良好的可移植性。

著录项

  • 来源
  • 作者单位

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, XidianUniversity, Xi’an 710071, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, XidianUniversity, Xi’an 710071, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, XidianUniversity, Xi’an 710071, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, XidianUniversity, Xi’an 710071, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, XidianUniversity, Xi’an 710071, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, XidianUniversity, Xi’an 710071, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    immunodominance clone selection algorithm; feature selection; GPU; parallel algorithm; rnOpenCL;

    机译:免疫优势克隆选择算法;特征选择;GPU;并行算法;rnOpenCL;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号