首页> 外文期刊>Concurrency and Computation >Multi-dimensional fuzzy trust evaluation for mobile social networks based on dynamic community structures
【24h】

Multi-dimensional fuzzy trust evaluation for mobile social networks based on dynamic community structures

机译:基于动态社区结构的移动社交网络多维模糊信任评估

获取原文
获取原文并翻译 | 示例

摘要

As mobile social networks (MSNs) are booming and gaining tremendous popularity, there have been anrnincreasing number of communications and interactions among users. Taking this advantage, users in MSNsrnmake decisions via collecting and combining trust information from different users. Hence, trust evaluationrntechnology has become a key requirement for network security in MSNs. In such MSNs, however,rnthe community/group structures are dynamically changing, and users may belong to multiple communities/rngroups. Therefore, trust evaluation plays a critical role in inferring trustworthy contacts among users. Inrnthis paper, an innovative trust inference model is proposed for MSNs, in which multiple dimensional trustrnmetrics are incorporated to reflect the complexity of trust. To infer trust relations between users in MSNsrnwith complex communities, we first construct dynamic implicit social behavioral graphs (DynISBG) basedrnon dynamic complex community/group structures and propose an efficient detection algorithm for DynISBGrnunder fuzzy degree u0002. We then present a multi-dimensional fuzzy trust inferring approach that involves fourrnmetrics, that is, static attribute trust factor, dynamic behavioral trust factor, long-term trust evolution factor,rnand recommendation-based trust opinion. Moreover, to obtain the recommendation-based trust opinionrnabout indirect connected users, we discuss the trust aggregation and propagation along trust path. Finally, wernevaluate the performance of our novel approach with simulations. The results show that, compared with thernexisting approaches, the proposed model provides a more detailed analysis in trust evaluation with higherrnaccuracy.
机译:随着移动社交网络(MSN)蓬勃发展并获得极大的普及,用户之间的通信和交互数量不断增加。利用此优势,MSNsrn中的用户可以通过收集和组合来自不同用户的信任信息来做出决策。因此,信任评估技术已经成为MSN中网络安全的关键要求。但是,在这样的MSN中,社区/组结构是动态变化的,用户可能属于多个社区/组。因此,信任评估在推断用户之间的可信赖联系方面起着至关重要的作用。本文提出了一种创新的MSN信任推理模型,该模型引入了多维信任度量以反映信任的复杂性。为了推断具有复杂社区的MSNsrn用户之间的信任关系,我们首先基于非动态复杂社区/群体结构构造了动态隐式社会行为图(DynISBG),并提出了一种在模糊度u0002下有效的DynISBGrn检测算法。然后,我们提出了一种涉及四个度量的多维模糊信任推断方法,即静态属性信任因子,动态行为信任因子,长期信任演化因子,基于推荐的信任意见。此外,为了获得有关间接连接用户的基于推荐的信任意见,我们讨论了信任在信任路径上的聚集和传播。最后,通过仿真全面评估我们新颖方法的性能。结果表明,与现有方法相比,该模型在信任评估中提供了更详细的分析,具有更高的准确性。

著录项

  • 来源
    《Concurrency and Computation》 |2017年第7期|e3901.1-e3901.22|共22页
  • 作者单位

    School of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411101, China School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China;

    School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China School of Information Science and Engineering, Central South University, Changsha 410083, China;

    1School of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411101, China School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China School of Computer, National University of Defense Science and Technology, Changsha 410073, China;

    School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    trusted computing; mobile social networks; dynamic implicit social behavioral graph; fuzzy detection; dynamic community structure;

    机译:可信计算;移动社交网络;动态的隐性社会行为图;模糊检测动态社区结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号