首页> 外文期刊>Concurrency and Computation >Secure cyber incident analytics framework using Monte Carlo simulations for financial cybersecurity insurance in cloud computing
【24h】

Secure cyber incident analytics framework using Monte Carlo simulations for financial cybersecurity insurance in cloud computing

机译:使用蒙特卡洛模拟的安全网络事件分析框架,用于云计算中的金融网络安全保险

获取原文
获取原文并翻译 | 示例

摘要

The remarkable increasing demands of mitigating losses from cyber incidents for financial firms have beenrndriving the rapid development of the Cybersecurity Insurance (CI). The implementations of CI have coveredrna variety of aspects in cyber incidents, from hacking to frauds. However, CI is still at its exploring stage sornthat there are a number of dimensions that are uncovered by the current applications. The cyber attack onrncritical infrastructure is one of the serious issues that prevents the expansions of CI. This paper addresses CIrnimplementations focusing on cloud-based service offerings and proposes a secure cyber incident analyticsrnframework using big data, named as Cost-Aware Hierarchical Cyber Incident Analytics (CA-HCIA). Thernapproach is designed for matching different cyber risk scenarios, which uses repository data. We use MonternCarlo simulations for extracting the incident features based on the training datasets. The main algorithmsrnin CA-HCIA include Monte Carlo Cyber Feature Extraction (MC2FE) and Optimal Cost Balance (OCA)rnAlgorithms. Our experimental evaluation has provided the theoretical proof of the adoptability and feasibility.rnResults show that our proposal improves the cost of existing techniques in 7.98% and 15.39%.
机译:对于金融公司而言,减轻网络事件造成的损失的日益增长的显着要求阻碍了网络安全保险(CI)的快速发展。 CI的实施涵盖了网络事件的各个方面,从黑客攻击到欺诈。但是,CI仍处于探索阶段,因此当前的应用程序尚未发现许多维度。对关键基础设施的网络攻击是阻止CI扩展的严重问题之一。本文介绍了专注于基于云的服务产品的CIrnimplementation,并提出了一种使用大数据的安全网络事件分析框架,称为成本感知分层网络事件分析(CA-HCIA)。 Thernapproach设计用于匹配使用存储库数据的不同网络风险方案。我们使用MonternCarlo仿真基于训练数据集提取事件特征。 CA-HCIA中的主要算法包括蒙特卡洛网络特征提取(MC2FE)和最佳成本平衡(OCA)算法。实验结果为可采用性和可行性提供了理论依据。结果表明,该方案将现有技术的成本降低了7.98%和15.39%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号