首页> 外文期刊>Concurrency, practice and experience >Self-adaptation and mutual adaptation for distributedrnscheduling in benevolent clouds
【24h】

Self-adaptation and mutual adaptation for distributedrnscheduling in benevolent clouds

机译:善意云中分布式调度的自适应和相互适应

获取原文
获取原文并翻译 | 示例

摘要

Joint service involving several clouds is an emerging form of cloud computing. In hybrid clouds, thernschedulers within 1 cloud must not only self-adapt to the job arrival processes and the workloadrnbut also mutually adapt to the scheduling polices of other schedulers. However, as a combinatorialrnoptimization problem, scheduling is challenged by the adaptation to those dynamics andrnuncertain behaviors of the peers. This article studies the collaboration among benevolent cloudsrnthat are cooperative in nature and willing to accept jobs from other clouds. We take advantagernof machine learning and propose a distributed scheduling mechanism to learn the knowledge ofrnjobmodel, resource performance, and others’ policies. Without explicit modeling and prediction,rnmachine learning guides scheduling decisions based on experiences. To examine the performancernof our approach,we conducted simulation using the SP2 jobworkload log of the SanDiego SupercomputerrnCenter under a test bed based on agent-based systems—SWARM. The results validaternthat our approach has much shorter mean response time than 5 typical dynamic schedulingrnalgorithms—opportunistic load balancing, minimum execution time, minimum completion time,rnswitching algorithm, and k-percent best. A better collaboration in hybrid cloud is achieved byrnfull adaptation.
机译:涉及多个云的联合服务是云计算的一种新兴形式。在混合云中,1个云内的调度程序不仅必须自适应工作到达过程和工作量,而且还必须相互适应其他调度程序的调度策略。但是,作为组合优化问题,调度面临的挑战是如何适应对等方的动态和不确定行为。本文研究了本质上是合作的并愿意接受其他云的工作的仁慈云之间的协作。我们利用机器学习的优势,并提出了一种分布式调度机制来学习作业模型,资源性能和其他策略的知识。无需明确的建模和预测,机器学习将根据经验指导调度决策。为了检验我们的方法的性能,我们在基于代理程序的系统SWARM的测试平台上,使用SanDiego超级计算机中心的SP2作业负荷日志进行了仿真。结果证明,我们的方法比5种典型的动态调度算法(机会负载均衡,最小执行时间,最小完成时间,切换算法和最佳k%)具有更短的平均响应时间。全面适应可以在混合云中实现更好的协作。

著录项

  • 来源
    《Concurrency, practice and experience》 |2017年第5期|1-12|共12页
  • 作者单位

    College of Information Science andEngineering, Hunan University, Changsha,Hunan, China;

    College of Information Science andEngineering, Hunan University, Changsha,Hunan, China;

    College of Mathematics and ComputerScience, Hunan Normal University, Changsha,Hunan, China;

    College of Information Science andEngineering, Hunan University, Changsha,Hunan, China;

    Department of Electrical and ComputerEngineering, North Dakota State University,Fargo, ND, USA;

    College of Information Science andEngineering, Hunan University, Changsha,Hunan, China,Department of Computer Science, StateUniversity of New York, New Paltz, NY, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    collaboration; distributed computing; hybrid cloud,machine learning; Q-learning; task scheduling;

    机译:合作;分布式计算混合云;机器学习Q学习任务调度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号