首页> 外文期刊>Concurrency and computation: practice and experience >RTS: road topology-based scheme for traffic condition estimation via vehicular crowdsensing
【24h】

RTS: road topology-based scheme for traffic condition estimation via vehicular crowdsensing

机译:RTS:基于道路拓扑的车辆人群感知交通状况评估方案

获取原文
获取原文并翻译 | 示例

摘要

Urban traffic condition usually serves as basic information for some intelligent urban applications, for example,rnintelligent transportation system. The traditional acquisition of such information is often costly becausernof the dependencies on infrastructures, such as cameras and loop detectors. Crowdsensing, as a new economicrnparadigm, can be utilized together with vehicular networks to efficiently gather vehicle-sensed datarnfor estimating the traffic condition. However, it has the problem of being lack of data uploading efficiencyrnand data usage effectiveness. In this paper, we take into account the topology of the road net to deal withrnthese problems. Specifically, we divide the road net into road sections and junction areas. Based on this division,rnwe introduce a two-phased data collection and processing scheme named road topology-based scheme.rnIt leverages the correlations among adjacent roads. In a junction area, data collected by vehicles are firstrnprocessed and integrated by a sponsor vehicle to locally calculate traffic condition. Both the selection of thernsponsor and the calculation of road condition utilize the road correlation. The sponsor then uploads the localrndata to a server. By employing the inherent relations among roads, the server processes data and estimatesrntraffic condition for the road sections without vehicular data in a global vision. We conduct experimentsrnbased on real vehicle trace data. The results indicate that our design can commendably handle the problemsrnof efficiency and effectiveness in traffic condition evaluation using the vehicular crowdsensing data.
机译:城市交通状况通常是一些智能城市应用(例如智能交通系统)的基本信息。由于对基础设施(如摄像机和环路检测器)的依赖性,传统的此类信息获取通常很昂贵。人群感知作为一种新的经济范式,可以与车辆网络一起使用,以有效地收集车辆感应数据,以估计交通状况。然而,它具有缺乏数据上传效率和数据使用效率的问题。在本文中,我们考虑了路网的拓扑结构来解决这些问题。具体来说,我们将路网分为路段和路口区域。在此划分的基础上,我们引入了两阶段的数据收集和处理方案,称为基于道路拓扑的方案。它利用了相邻道路之间的相关性。在交叉路口,由赞助商的车辆首先对车辆收集的数据进行处理和整合,以本地计算交通状况。传感器的选择和路况的计算都利用了道路相关性。然后,发起人将本地数据上传到服务器。通过利用道路之间的固有关系,服务器可以在全局视野中处理数据并估算路段的交通状况,而无需车辆数据。我们基于真实的车辆跟踪数据进行实验。结果表明,我们的设计可以很好地处理交通拥挤数据在交通状况评估中的效率和有效性问题。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2017年第3期|e3778.1-e3778.15|共15页
  • 作者单位

    Department of Computer Science and Technology, Tongji University, Shanghai, China Key Laboratory of Embedded System and Service Computing, Ministry of Education, Shanghai, China;

    Department of Computer Science and Technology, Tongji University, Shanghai, China Key Laboratory of Embedded System and Service Computing, Ministry of Education, Shanghai, China;

    School of Computing and Mathematics, University of Derby, Derby, UK;

    Department of Computer Science and Technology, Tongji University, Shanghai, China Key Laboratory of Embedded System and Service Computing, Ministry of Education, Shanghai, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    crowdsensing; vehicular networks; traffic condition evaluation; road topology;

    机译:人群感知车辆网络;交通状况评估;道路拓扑;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号