首页> 外文期刊>Concurrency and computation: practice and experience >Accelerating explicit ODE methods on GPUs by kernel fusion
【24h】

Accelerating explicit ODE methods on GPUs by kernel fusion

机译:通过内核融合在GPU上加速显式ODE方法

获取原文
获取原文并翻译 | 示例

摘要

Graphics processing units (GPUs) have a promising architecture for implementing highly parallelrnsolution methods for systems of ordinary differential equations (ODEs). However, their highrnperformance comes at the price of caveats such as small caches or wide SIMD. For ODE methods,rnoptimizing the memory access pattern is often crucial. In this article, instead of consideringrnonly one specific method, we generalize the description of explicit ODE methods by using datarnflow graphs consisting of basic operations that are suitable to cover the types of computationsrnoccurring in all common explicit methods. After showing that the straightforward approach forrnprocessing the data flow graph by calling one kernel per basic operation is memory bound, wernexplain how the number of memory accesses can be reduced by the kernel fusion technique,rnwhich fuses several basic operations into one kernel. Moreover, we will present enabling transformationsrnthat allow additional fusions and thus can reduce the number of memory accessesrneven further. We apply these optimizations to three different classes of explicit ODE methods:rnembedded Runge–Kutta (RK) methods, parallel iterated RK (PIRK) methods, and peer methods.rnA detailed experimental evaluation on three modern GPUs showed speedups between 1.86 andrn3.51 compared to unfused implementations.
机译:图形处理单元(GPU)具有可用于实现常微分方程(ODE)系统的高度并行求解方法的体系结构。但是,它们的高性能是以诸如小型缓存或宽SIMD之类的警告为代价的。对于ODE方法,优化内存访问模式通常至关重要。在本文中,我们没有考虑仅一种特定的方法,而是通过使用由基本操作组成的数据流图来概括对显式ODE方法的描述,这些基本操作适合于涵盖所有常见显式方法中发生的计算类型。在说明了通过每个基本操作调用一个内核来处理数据流图的直接方法受内存限制后,我们解释了如何通过内核融合技术来减少内存访问次数,该方法将多个基本操作融合为一个内核。此外,我们将介绍使能的转换,该转换允许进行其他融合,从而可以进一步减少内存访问的数量。我们将这些优化应用于三类不同的显式ODE方法:嵌入式龙格-库塔(RK)方法,并行迭代RK(PIRK)方法和对等方法。在三个现代GPU上进行的详细实验评估显示,相比之下,速度提高了1.86和rn3.51未融合的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号