首页> 外文会议>International Symposium on Computer Architecture and High Performance Computing >Exploiting Limited Access Distance for Kernel Fusion Across the Stages of Explicit One-Step Methods on GPUs
【24h】

Exploiting Limited Access Distance for Kernel Fusion Across the Stages of Explicit One-Step Methods on GPUs

机译:在GPU的显式一站式方法的各个阶段利用有限的访问距离进行内核融合

获取原文

摘要

The performance of explicit parallel methods solving large systems of ordinary differential equations (ODEs) on GPUs is often memory bound. Therefore, locality optimizations, such as kernel fusion, are desirable. This paper exploits a special property of a large class of right-hand-side (RHS) functions to enable the fusion of computations of blocks of components across multiple stages of the method. This leads to a tiling of the stages within one time step. Our approach is based on a representation of the ODE method by a data flow graph and allows efficient GPU code with fused kernels to be generated automatically for user-defined tilings. In particular, we investigate two generalized tiling strategies, trapezoidal and hexagonal tiling, which are evaluated experimentally for several different high-order Runge-Kutta (RK) methods.
机译:在GPU上求解大型系统的常微分方程(ODE)的显式并行方法的性能通常受内存限制。因此,需要诸如内核融合之类的局部性优化。本文利用了一大类右侧(RHS)函数的特殊属性,使方法的多个阶段的组件块计算融合成为可能。这导致在一个时间步内平铺各个阶段。我们的方法基于数​​据流图对ODE方法的表示,并允许为用户定义的平铺自动生成带有融合内核的高效GPU代码。特别是,我们研究了两种通用的拼贴策略,即梯形和六角形拼贴,它们是针对几种不同的高阶Runge-Kutta(RK)方法进行实验评估的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号