首页> 外文期刊>Concurrency and Computation >A comparative study of the class imbalance problem in Twitter spam detection
【24h】

A comparative study of the class imbalance problem in Twitter spam detection

机译:Twitter垃圾邮件检测中类别不平衡问题的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Recently, online social network (OSN) such as Twitter has become an important and popularrnsource for real-time information and news dissemination, and Twitter is inevitably a prime targetrnof spammers. It has been showed that the security threats caused by Twitter spam can reach farrnbeyond the social media platform itself. To mitigate the damage caused by Twitter spam,machinernlearning classification algorithms have been employed by researchers and communities to detectrnthe Twitter spam.However,most of these studies have overlooked the class imbalance problem inrnTwitter spamdetection. In this paper,wehave studied the class imbalance problem inTwitter spamrndetection. Firstly, we have conducted a comparative study regarding some popular methods inrnhandling the class imbalance problem in order to identify themost effective approach for addressingrnthe class imbalance problem. Then, we have conducted another comparative study fromrnTwitter spam detection based on several classic techniques. Experimental results demonstraternthat a fuzy-based ensemble learning can significantly improve the classification performance onrnimbalance ground truth Twitter data.
机译:最近,诸如Twitter之类的在线社交网络(OSN)已成为实时信息和新闻传播的重要且受欢迎的资源,并且Twitter不可避免地是垃圾邮件的主要攻击目标。研究表明,Twitter垃圾邮件所造成的安全威胁可能远远超过社交媒体平台本身。为了减轻Twitter垃圾邮件造成的损害,研究人员和社区使用了机器学习分类算法来检测Twitter垃圾邮件。但是,这些研究大多数都忽略了Twitter垃圾邮件检测中的类不平衡问题。本文研究了Twitter垃圾邮件检测中的类不平衡问题。首先,我们对处理阶级失衡问题的一些流行方法进行了比较研究,以找出解决阶级失衡问题的最有效方法。然后,我们基于几种经典技术对Twitter垃圾邮件检测进行了另一项比较研究。实验结果表明,基于模糊的集成学习可以显着提高基于不平衡地面实况Twitter数据的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号