首页> 外文期刊>Computing >Effective learning model of user classification based on ensemble learning algorithms
【24h】

Effective learning model of user classification based on ensemble learning algorithms

机译:基于集成学习算法的有效的用户分类学习模型

获取原文
获取原文并翻译 | 示例

摘要

Aiming to aid Electric-Power Industry to accurately understand users, hybrid learning model based ensemble learning algorithms for recognizing user to be sensitive to electric charge is proposed in this paper. On the basis of big data presented by CCF competition sponsor in China, with some excellent technology or algorithm such asJieBa, SFFS, etc., we extract many key features from data set and successfully draw a portrait for users who pay close attention to electric charge. Furthermore, machine learning algorithms and the strategy selection model related to them are investigated. The feasibility that hybrid learning model combining several ensemble learning algorithms can substantially improve classification accuracy are proved from theoretical level. Then the details of implementing hybrid learning model are described in the paper. Lastly, the hybrid learning model named Stacking is achieved, which yields better performance in contrast to the state-of-the-art competitors. The experimental results indicate that Stacking has both high precision and recall with 0.8 and 0.85 respectively. Furthermore the F1 score of Stacking evaluation is 0.823.
机译:为了帮助电力行业准确地了解用户,本文提出了一种基于混合学习模型的集成学习算法,用于识别用户对电荷敏感。根据中国CCF比赛赞助商提供的大数据,结合捷霸,SFFS等一些优秀的技术或算法,我们从数据集中提取了许多关键特征,并为关注电荷的用户成功绘制了肖像。此外,研究了机器学习算法和与其相关的策略选择模型。从理论层面证明了结合几种集成学习算法的混合学习模型可以大大提高分类精度的可行性。然后描述了实现混合学习模型的细节。最后,实现了名为Stacking的混合学习模型,与最新的竞争对手相比,该模型产生了更好的性能。实验结果表明,Stacking具有很高的精度和召回率,分别为0.8和0.85。此外,Stacking评估的F1得分为0.823。

著录项

  • 来源
    《Computing》 |2019年第6期|531-545|共15页
  • 作者单位

    Xiamen Univ, Software Sch, Xiamen 361005, Peoples R China;

    Xiamen Univ, Software Sch, Xiamen 361005, Peoples R China;

    Xiamen Univ, Software Sch, Xiamen 361005, Peoples R China;

    Ningde Normal Univ, Sch Informat Mech & Elect Enginerring, Ningde 352100, Peoples R China;

    Ningde Normal Univ, Sch Informat Mech & Elect Enginerring, Ningde 352100, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    User classification; User portrait; Machine learning algorithms; Hybrid learning model;

    机译:用户分类;用户画像;机器学习算法;混合学习模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号