首页> 外文期刊>Computing >Gauss-Newton Multilevel Methods for Least-Spuares Finite Element Computations of Variably Saturated Subsurface Flow
【24h】

Gauss-Newton Multilevel Methods for Least-Spuares Finite Element Computations of Variably Saturated Subsurface Flow

机译:可变饱和地下流的最小二乘有限元计算的高斯-牛顿多级方法

获取原文
获取原文并翻译 | 示例

摘要

We apply the least-squares mixed finite element framework tothe nonlinear elliqtic problems arising in each time-step of an implicit Euler discretization for variably saturated flow. This approach allows the combination of standard piecewise linear H -conforming finite elements for the hydraulic potential with the H(div)-conforming Raviart-Thomas spaces for the flux. It also provides an a posteriori error estimator which may by used in an adaptive mesh refinement strategy. The resulting nonlinear alge-braic least-squares problems are solved by an inexact Gauss-Newton method using a stopping crite-rion for the inner iteration which is bassed on the change of the linearized lease-squares functional relative to the nonlinear least-squares functional. The inner iteration is carried out using an adaptive multilevel method with a block Gauss-seidel smoothing iteration. For a realistic water table recharge problem, the resuits of computational experiments are presented.
机译:我们将最小二乘混合有限元框架应用于在可变饱和流的隐式欧拉离散化的每个时间步中出现的非线性椭圆问题。这种方法允许将用于水力势的标准分段线性H限定有限元与H(div)限定通量的Raviart-Thomas空间相结合。它还提供了后验误差估计器,其可以在自适应网格细化策略中使用。最终的非线性代数-最小二乘问题是通过不精确的Gauss-Newton方法解决的,该方法对内部迭代使用了停止准则,该方法基于线性化租约平方函数相对于非线性最小二乘函数的变化。使用具有块高斯-塞德尔平滑迭代的自适应多级方法执行内部迭代。对于现实的地下水位补给问题,提出了计算实验的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号