首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Locally Conservative, Stabilized Finite Element Methods For Variably Saturated Flow
【24h】

Locally Conservative, Stabilized Finite Element Methods For Variably Saturated Flow

机译:可变饱和流的局部守恒稳定有限元方法

获取原文
获取原文并翻译 | 示例

摘要

Standard Galerkin finite element methods for variably saturated groundwater flow have several deficiencies. For instance, local oscillations can appear around sharp infiltration fronts without the use of mass-lumping, and velocity fields obtained from differentiation of pressure fields are discontinuous at element boundaries. Here, we consider conforming finite element discretizations based on a multiscale formulation along with recently developed, local postprocessing schemes. The resulting approach maintains the basic flexibility and appeal of traditional finite element methods, while controlling nonphysical oscillations and producing element-wise mass-conservative velocity fields. Accuracy and efficiency of the proposed schemes are evaluated through a series of steady-state and transient variably saturated groundwater flow problems in homogeneous as well as heterogeneous domains. The schemes are formulated for a generic nonlinear advection-diffusion equation and are thus applicable to many other flow models.
机译:可变饱和地下水流的标准Galerkin有限元方法存在一些缺陷。例如,在不使用质量集总的情况下,在尖锐的渗透锋周围会出现局部振荡,并且通过压力场的微分获得的速度场在单元边界处是不连续的。在这里,我们考虑基于多尺度公式以及最近开发的局部后处理方案的有限元离散化。由此产生的方法在控制非物理振荡并产生逐元素质量守恒速度场的同时,保持了传统有限元方法的基本灵活性和吸引力。通过在均质和非均质域中的一系列稳态和瞬态可变饱和地下水流问题,评估了所提方案的准确性和效率。该方案是为一般的非线性对流扩散方程式制定的,因此适用于许多其他流动模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号