首页> 外文期刊>Computing and visualization in science >Applications of a fast multipole Galerkin in boundary element method in linear elastostatics
【24h】

Applications of a fast multipole Galerkin in boundary element method in linear elastostatics

机译:快速多极Galerkin在线性弹性静力学边界元法中的应用

获取原文
获取原文并翻译 | 示例

摘要

Boundary element methods provide a powerful tool for solving boundary value problems of linear elastostatics, especially in complicated three-dimensional structures. In contrast to the standard Galerkin approach leading to dense stiffness matrices, in fast boundary element methods such as the fast multipole method the application of matrix-vector products can be realized with almost linear complexity. Since all boundary integral operators of linear elastostatics can be reduced to those of the Laplacian, the discretization of the corresponding single and double layer potentials of the Laplace operator has to be employed only. This technique results in a fast multipole method which is an efficient tool for the simulation of elastic stress fields in engineering and industrial applications.
机译:边界元方法为解决线性弹性静力学的边值问题提供了强大的工具,尤其是在复杂的三维结构中。与导致密集刚度矩阵的标准Galerkin方法相反,在快速边界元素方法(例如快速多极方法)中,矩阵矢量乘积的应用几乎可以实现线性复杂度。由于线性弹性静力学的所有边界积分算子都可简化为拉普拉斯算子,因此仅需采用拉普拉斯算子的相应单层和双层电势的离散化即可。该技术产生了一种快速的多极方法,是一种在工程和工业应用中模拟弹性应力场的有效工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号