首页> 外文期刊>Computing and visualization in science >Composite Finite Elements For 3d Image Based Computing
【24h】

Composite Finite Elements For 3d Image Based Computing

机译:基于3d图像的计算的复合有限元

获取原文
获取原文并翻译 | 示例

摘要

We present an algorithmical concept for modeling and simulation with partial differential equations (PDEs) in image based computing where the computational geometry is defined through previously segmented image data. Such problems occur in applications from biology and medicine where the underlying image data has been acquired through, e.g. computed tomography (CT), magnetic resonance imaging (MRI) or electron microscopy (EM). Based on a level-set description of the computational domain, our approach is capable of automatically providing suitable composite finite element functions that resolve the complicated shapes in the medical/biological data set. It is efficient in the sense that the traversal of the grid (and thus assembling matrices for finite element computations) inherits the efficiency of uniform grids away from complicated structures. The method's efficiency heavily depends on precomputed lookup tables in the vicinity of the domain boundary or interface. A suitable multigrid method is used for an efficient solution ofrnthe systems of equations resulting from the composite finite element discretization. The paper focuses on both algorithmical and implementational details. Scalar and vector valued model problems as well as real applications underline the usability of our approach.
机译:我们提出了一种基于图像的计算中使用偏微分方程(PDE)进行建模和仿真的算法概念,其中计算几何是通过先前分段的图像数据定义的。在生物学和医学的应用中发生了这样的问题,其中已经通过例如图像采集了基础图像数据。计算机断层扫描(CT),磁共振成像(MRI)或电子显微镜(EM)。基于对计算域的水平集描述,我们的方法能够自动提供合适的复合有限元函数,以解决医学/生物学数据集中的复杂形状。从某种意义上说,网格的遍历(以及因此用于有限元计算的组装矩阵)继承了均匀网格的效率,而不是复杂的结构。该方法的效率在很大程度上取决于域边界或接口附近的预先计算的查找表。适当的多重网格方法可用于有效解决由复合有限元离散化产生的方程组。本文着重于算法和实现细节。标量和向量值模型问题以及实际应用强调了我们方法的可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号