首页> 外文期刊>Computing and visualization in science >A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing
【24h】

A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing

机译:并行有限元的几何数据结构及其在块平滑多网格方法中的应用

获取原文
获取原文并翻译 | 示例

摘要

We present a data structure for parallel computing which is directly linked to geometric quantities of an underlying mesh and which is well adapted to the requirements of a general finite element realization. In addition, we define an abstract linear algebra model which supports multigrid methods (extending our previous work in Comp. Vis. Sci. 1 (1997), 27-40). Finally, we apply the parallel multigrid pre-conditioner to several configurations in linear elasticity and we compute the condition number numerically for different smoothers, resulting in a quantitative evaluation of parallel multigrid performance.
机译:我们提出了一种用于并行计算的数据结构,该数据结构直接链接到基础网格的几何量,并且很好地适应了一般有限元实现的要求。另外,我们定义了一个支持多重网格方法的抽象线性代数模型(扩展了我们先前在Comp。Vis。Sci。1(1997),27-40中的工作)。最后,我们将并行多网格预处理器应用于线性弹性的几种配置,并通过数值计算不同平滑器的条件数,从而对并行多网格性能进行了定量评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号