首页> 外文期刊>Computing and visualization in science >Fast multipole preconditioners for sparse matrices arising from elliptic equations
【24h】

Fast multipole preconditioners for sparse matrices arising from elliptic equations

机译:椭圆方程产生的稀疏矩阵的快速多极预处理器

获取原文
获取原文并翻译 | 示例

摘要

Abstract Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.
机译:摘要在求解椭圆问题的最优分层算法中,快速多极子方法(FMM)具有对新兴架构的适应性,具有很高的算术强度,可调精度和可放宽的全局同步要求。我们证明,FMM配备了边界积分能力,可以满足条件明确的自由空间内核表示形式的问题,而FMM具有边界积分能力,因此它可以作为有限域椭圆边界值问题的先决条件。有限边界,然后将其包装在Krylov方法中,以扩展到更通用的运算符。在这里,我们不讨论FMM的完善应用,以在边界元素方法的Krylov求解器内实现矩阵矢量乘法。取而代之的是,我们建议使用FMM来解决非均质Poisson式问题的体积对体积贡献,其中边界积分仅占整体计算的一小部分。我们的方法可用于预处理由有限差分/元素离散化引起的稀疏矩阵,并且可以处理更广泛的科学应用。与多网格方法相比,它能够将代数收敛速度降低到离散化PDE的截断误差,并且在商用体系结构超级计算机上提供潜在的优越多核和分布式内存可伸缩性。与其他利用密集分解算子的非对角线块的低秩特征的方法相比,FMM预处理的Krylov迭代可减少通信量,因为它是无矩阵的,并利用了FMM的树结构。我们以可复制的详细方式描述了我们的测试,并提供了免费代码和概述说明,以进一步扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号