首页> 外文期刊>Computing and Visualization in Science >Preconditioning sparse grad-div/augmented Lagrangian stabilized saddle point systems
【24h】

Preconditioning sparse grad-div/augmented Lagrangian stabilized saddle point systems

机译:预处理稀疏grad-div /增强拉格朗日稳定鞍点系统

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the analysis of preconditioning techniques for a recently introduced sparse grad-div stabilization of the Oseen problem. The finite element discretization error for the Oseen problem can be reduced through the addition of a grad-div stabilization term to the momentum equation of the Oseen problem. Such a stabilization has an interesting effect on the properties of the discrete linear system of equations, in particular on the convergence properties of iterative solvers. Comparing to unstabilized systems, it swaps the levels of difficulties for solving the two main subproblems, i.e., solving for the first diagonal block and solving a Schur complement problem, that occur in preconditioners based on block triangular factorizations. In this paper we are concerned with a sparse variant of grad-div stabilization which has been shown to have a stabilization effect similar to the full grad-div stabilization while leading to a sparser system matrix. Our focus lies on the subsequent iterative solution of the discrete system of equations.
机译:本文针对最近引入的Oseen问题的稀疏grad-div稳定进行预处理技术的分析。可以通过在Oseen问题的动量方程中添加grad-div稳定项来减少Oseen问题的有限元离散化误差。这样的稳定​​化对离散的线性方程组的性质,特别是对迭代求解器的收敛性质具有有趣的影响。与不稳定系统相比,它交换了解决两个主要子问题的难易程度,即解决基于块三角分解的预处理器中出现的第一个对角线块和Schur补题。在本文中,我们关注的是grad-div稳定的稀疏变体,它已显示出类似于完全grad-div稳定的稳定效果,同时导致了稀疏系统矩阵。我们的重点在于离散方程组的后续迭代解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号