首页> 外文期刊>Computing and Visualization in Science >An efficient approach for calculating default probabilities for cash-flow based project finance with reserve account
【24h】

An efficient approach for calculating default probabilities for cash-flow based project finance with reserve account

机译:一种有效的方法来计算带有准备金帐户的基于现金流的项目融资的违约概率

获取原文
获取原文并翻译 | 示例

摘要

The quantitative assessment of risks associated with several types, eg, rating methods for cash-flow driven projects, can be reduced to determining the probability that a random variable, for instance representing a cash-flow, drops below a given threshold. That probability can be derived in an analytic closed form, if the underlying distribution is not too complex. However, in practice there is often a reserve account in place, which saves excess cash to reduce the volatility of the cash-flow available for debt service. Due to the reserve account, the derivation of a solution in an analytic closed form is even in the case of rather simple underlying distributions, eg, independent Gaussian distribution, not feasible. In this paper, we present two very efficient approximation methodologies for calculating the probability that a random variable falls under a threshold allowing the presence of a reserve account. The first proposed approach is derived using transition probabilities. The resulting recursive scheme can be implemented easily and yields fast and stable results even in the case of dependent cash-flows. The second methodology uses the similarity of the considered stochastic processes with convection-diffusion processes and combines the stochastic transition probabilities with the finite volume method, which is well known for solving partial differential equations. We present numerical results for some realistic test problems demonstrating convergence of order h for the transition probability based approach and (h^2) for the combination with the finite volume method for sufficiently smooth probability distributions.
机译:与几种类型相关的风险的定量评估(例如,现金流量驱动项目的评估方法)可以减少到确定随机变量(例如代表现金流量)下降到给定阈值以下的概率。如果基础分布不太复杂,则可以以解析封闭形式得出该概率。但是,实际上通常会有一个准备金帐户,该帐户可以节省多余的现金,以减少可用于偿债的现金流的波动性。由于有储备金账户,即使在相当简单的基础分布(例如独立的高斯分布)的情况下,以解析封闭形式导出解决方案也是不可行的。在本文中,我们提出了两种非常有效的近似方法,用于计算随机变量低于允许存在准备金帐户的阈值的概率。首先提出的方法是使用转移概率导出的。由此产生的递归方案可以轻松实现,即使在现金流量依赖的情况下,也可以快速而稳定地产生结果。第二种方法利用了所考虑的随机过程与对流扩散过程的相似性,并将随机跃迁概率与有限体积法相结合,这对于求解偏微分方程是众所周知的。我们给出了一些现实的测试问题的数值结果,这些问题证明了基于过渡概率的方法的阶次为h的收敛,与有限体积方法的组合为足够平滑的概率分布的(h ^ 2)的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号