首页> 外文期刊>Computing in science & engineering >A Transductive Transfer Learning Approach Based on Manifold Learning
【24h】

A Transductive Transfer Learning Approach Based on Manifold Learning

机译:基于流形学习的转移转移学习方法

获取原文
获取原文并翻译 | 示例

摘要

Traditional machine learning approaches usually assume that the training data and the test data follow the same distribution. When the training data and the test data are not drawn from the same distribution, most traditional machine learning approaches cannot work well. Transfer learning approaches allow the distributions of the training data and the test data to be different. Transfer learning approaches mainly focus on how to reduce the difference between the training data and the test data, but mostly ignore the potential semantic information. This paper proposes a transductive transfer learning approach based on manifold learning (TTL-ML). TTL-ML designs a new feature representation space, where the semantic information hidden in the dataset structure is preserved, and the distribution difference between the source domain and the target domain is reduced. Experimental results on the common transfer learning datasets demonstrate that the proposed approach outperforms the several state-of-the-art approaches on image classification.
机译:传统的机器学习方法通​​常假设培训数据和测试数据遵循相同的分发。当训练数据和测试数据没有从相同的分布中绘制时,大多数传统的机器学习方法都无法正常工作。转移学习方法允许培训数据和测试数据的分布不同。转移学习方法主要关注如何降低培训数据和测试数据之间的差异,但大多数忽略了潜在的语义信息。本文提出了一种基于歧管学习(TTL-ML)的转换转移学习方法。 TTL-ML设计一个新的特征表示空间,其中保留了在数据集结构中隐藏的语义信息,并且源域和目标域之间的分布差异减少。共同转移学习数据集的实验结果表明,所提出的方法优于图像分类的几种最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号