首页> 外文期刊>Computing reviews >Adaptive learning of polynomial networks: genetic programming, backpropagation and Bayesian methods (Genetic and Evolutionary Computation Series)
【24h】

Adaptive learning of polynomial networks: genetic programming, backpropagation and Bayesian methods (Genetic and Evolutionary Computation Series)

机译:多项式网络的自适应学习:遗传编程,反向传播和贝叶斯方法(遗传和进化计算系列)

获取原文
获取原文并翻译 | 示例

摘要

The polynomial neural network (PNN) framework described in this book has its origins in Ivakhnenko's "group method of data handling," or GMDH, from the early 1970s. The GMDH technique and its variants, based upon a neural network-like hierarchy of simple multivariate polynomial activation functions, have been applied to a wide variety of problems in forecasting, approximation, clustering, pattern recognition, and other areas.
机译:本书中描述的多项式神经网络(PNN)框架起源于1970年代初期伊瓦赫宁科的“数据处理的分组方法”或GMDH。 GMDH技术及其变体基于简单的多元多项式激活函数的类似于神经网络的层次结构,已应用于预测,近似,聚类,模式识别和其他领域中的各种问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号