首页> 外文期刊>Computing and informatics >MOVING TARGET DETECTION BASED ON AN ADAPTIVE LOW-RANK SPARSE DECOMPOSITION
【24h】

MOVING TARGET DETECTION BASED ON AN ADAPTIVE LOW-RANK SPARSE DECOMPOSITION

机译:基于自适应低级稀疏分解移动目标检测

获取原文
获取原文并翻译 | 示例

摘要

For the exact detection of moving targets in video processing, an adaptive low-rank sparse decomposition algorithm is proposed in this paper. In the paper's algorithm, the background model and the solved frame vector are first used to construct an augmented matrix, then robust principal component analysis (RPCA) is used to perform a low-rank sparse decomposition on the enhanced augmented matrix. The separated low-rank part and sparse noise correspond to the background and motion foreground of the video frame, respectively, the incremental singular value decomposition method and the current background vector are used to update the background model. The experimental results show that the algorithm can deal with complex scenes such as light changes and background motion better, and the algorithm's delay and memory consumption can be reduced effectively.
机译:为了精确地检测视频处理中的移动目标,本文提出了一种自适应低级稀疏分解算法。 在本文的算法中,首先使用背景模型和求解的帧矢量来构造增强矩阵,然后鲁棒主成分分析(RPCA)用于对增强增强矩阵对低秩稀疏分解进行低级稀疏分解。 分别的低秩零件和稀疏噪声分别对应于视频帧的背景和运动前景,增量奇异值分解方法和当前背景矢量用于更新背景模型。 实验结果表明,该算法可以更好地处理诸如光变化和背景运动之类的复杂场景,并且可以有效地减少算法的延迟和存储器消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号