首页> 外文期刊>Computing and informatics >SEMI-SUPERVISED LEARNING FOR PERSONALIZED WEB RECOMMENDER SYSTEM
【24h】

SEMI-SUPERVISED LEARNING FOR PERSONALIZED WEB RECOMMENDER SYSTEM

机译:个性化Web推荐系统的半监督学习

获取原文
获取原文并翻译 | 示例

摘要

To learn a Web browsing behavior model, a large amount of labelled data must be available beforehand. However, very often the labelled data is limited and expensive to generate, since labelling typically requires human expertise. It could be even worse when we want to train personalized model. This paper proposes to train a personalized Web browsing behavior model by semi-supervised learning. The preliminary result based on the data from our user study shows that semi-supervised learning performs fairly well even though there are very few labelled data we can obtain from the specific user.
机译:要学习Web浏览行为模型,必须预先提供大量带标签的数据。然而,由于标记通常需要人类专业知识,因此标记的数据通常非常有限且生成成本很高。当我们想训练个性化模型时,情况可能更糟。本文提出通过半监督学习训练个性化的Web浏览行为模型。根据我们的用户研究数据得出的初步结果表明,即使从特定用户那里获得的标记数据很少,半监督学习的效果也相当不错。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号