首页> 外文期刊>Computers & Structures >Multiscale design of coated structures with periodic uniform infill for vibration suppression
【24h】

Multiscale design of coated structures with periodic uniform infill for vibration suppression

机译:涂层结构的多尺度设计,振动抑制周期均匀填充

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel design strategy to minimize the dynamic compliance of a vibrating infill structure with a solid outer coating and a periodic uniform infill lattice is presented. The vibration of the linearly elastic infill structure is excited by time-harmonic external mechanical loading. The design optimization of the infill lattice is performed simultaneously with the topology optimization of the macroscale structure, which also includes the coating. Multiscale topological designs of infill structures are presented in numerical examples for different excitation frequencies, different limits on static compliance, different damping properties, and different boundary conditions. The results are obtained by the finite element method and gradient-based optimization using analytical sensitivity analysis, which is derived and presented in the fully discrete setting. The influences of excitation frequencies, static constraints, damping properties, coating thicknesses, and boundary conditions on the optimized macrostructures and microstructures are discussed in the numerical examples. In general, the optimized microstructures reflect the shape characteristics of the macrostructure configuration, where Kagome-like microstructures have been obtained in some examples. Moreover, in the optimized results the microstructures include more but finer structural members for the design optimized for low excitation frequencies. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
机译:本文介绍了一种新颖的设计策略,以使振动填充结构与固体外涂层和周期性均匀填充晶格最小化。线性弹性填充结构的振动通过时间谐波外部机械负载激发。填充晶格的设计优化同时进行宏观结构的拓扑结构,该宏观结构还包括涂层。填充结构的多尺度拓扑设计在不同励磁频率的数值示例中呈现,静电符合性的不同限制,不同的阻尼性能和不同的边界条件。结果是通过使用分析灵敏度分析的有限元方法和基于梯度的优化来获得,这是完全离散的设置中的衍生和呈现。在数值示例中讨论了激发频率,静态约束,阻尼性质,涂层厚度和边界条件的影响和边界条件。通常,优化的微结构反映了大脉结构构造的形状特征,其中在一些实例中获得了kagome的微结构。此外,在优化的结果中,微结构包括更好的结构构件,用于设计用于低励磁频率的设计。 (c)2021作者。由elsevier有限公司发布这是CC下的开放式访问文章(http:// creativecommons.org/licenses/by/4.0/)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号