首页> 外文期刊>Computers & Structures >Exact transcendental stiffness matrices of general beam-columns embedded in elastic mediums
【24h】

Exact transcendental stiffness matrices of general beam-columns embedded in elastic mediums

机译:嵌入弹性介质中的一般梁柱的精确超晶矩阵

获取原文
获取原文并翻译 | 示例

摘要

Stiffness matrices of beams embedded in an elastic medium and subjected to axial forces are considered. Both the bending and the axial deformations have been incorporated. Two approaches for deriving the element stiffness matrix analytically have been proposed. The first approach is based on the direct force-displacement relationship, whereas the second approach exploits shape functions within the finite element framework. The displacement function within the beam is obtained from the solution of the governing differential equation with suitable boundary conditions. Both approaches result in identical expressions when the exact transcendental displacement functions are used. Exact closed-form expressions of the elements of the stiffness matrix have been derived for the bending and axial deformation. Depending on the nature of the axial force and stiffness of the elastic medium, seven different cases are proposed for the bending stiffness matrix. A unified approach to the non-dimensional representation of the stiffness matrix elements and system parameters that are consistent across all the cases has been developed. Through Taylor-series expansions of the stiffness matrix coefficients, it is shown that the classical stiffness matrices appear as an approximation when only the first few terms of the series are retained. Numerical results shown in the paper explicitly quantify the error in using the classical stiffness compared to the exact stiffness matrix derived in the paper. The expressions derived here gives the most comprehensive and consistent description of the stiffness coefficients, which can be directly used in the context of finite element analysis over a wide range of parameter values. (c) 2021 Elsevier Ltd. All rights reserved.
机译:考虑嵌入弹性介质中并经受轴向力的梁的刚度矩阵。弯曲和轴向变形都已被掺入。已经提出了两种用于产生元素刚度矩阵的方法。第一方法是基于直接力 - 位移关系,而第二种方法利用有限元框架内的形状函数。光束内的位移函数是从具有合适边界条件的控制微分方程的溶液获得的。当使用精确的超越位移函数时,两种方法都会导致相同的表达式。已经推导出用于弯曲和轴向变形的刚度矩阵元件的确切闭合表达。根据弹性介质的轴向力和刚度的性质,提出了弯曲刚度基质的七种不同的情况。已经开发出突出的矩阵元素和系统参数的非维度表示的统一方法。通过刚度矩阵系数的泰勒系列膨胀,示出了当仅保留该系列的前几个术语时,经典刚度矩阵显得近似。与纸张中衍生的精确刚度矩阵相比,本文中所示的数值结果明确地量化了使用经典刚度的误差。这里派生的表达式提供了刚度系数的最全面和一致的描述,该刚度系数可以在有限元分析的上下文中直接用于广泛的参数值。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号