首页> 外文期刊>Computers & Structures >Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis
【24h】

Kernel principal component analysis-based Gaussian process regression modelling for high-dimensional reliability analysis

机译:基于内核主成分分析的高斯过程回归模型,用于高维可靠性分析

获取原文
获取原文并翻译 | 示例

摘要

An efficient reliability method is presented to address the challenge inherent in the high-dimensional reliability analysis. The critical contribution is an elegant implementation of combining the kernel principal component analysis (KPCA)-based nonlinear dimension reduction and the Gaussian process regression (GPR) surrogate model by introducing a nonintrusive, joint-training scheme. This treatment leads to an optimal KPCA-based subspace in which an accurate low-dimensional GPR model, denoted as the KPCA-GPR model, can be readily achieved. Then, the KPCA-GPR model is combined with the active learning (AL) -based sampling strategy and the Monte Carlo simulation (MCS). In this regard, the newly-added sample at each iteration can be employed simultaneously to both update the estimated KPCA-based subspace and refine the GPR model built on that subspace, which alleviates the 'curse of dimensionality' to some extent and improves progressively the failure probability estimation provided by the low-dimensional GPR model. In order to demonstrate the effectiveness of the proposed method, two numerical examples are investigated, involving both the analysis of high-dimensional, nonlinear, explicit performance functions and the static/dynamic reliability analysis of a truss structure with implicit performance functions. Numerical results indicate that the proposed method is of both accuracy and efficiency for high-dimensional reliability problems. (C) 2020 Elsevier Ltd. All rights reserved.
机译:提出了一种有效的可靠性方法来解决高维可靠性分析中固有的挑战。关键贡献是通过引入非目的,联合培训方案结合内核主成分分析(KPCA)的非线性维度减少和高斯过程回归(GPR)代理模型的优雅实现。该处理导致最佳的基于KPCA的子空间,其中可以容易地实现作为KPCA-GPR模型的精确低维GPR模型。然后,KPCA-GPR模型与基于主动学习(AL)的采样策略和蒙特卡罗模拟(MCS)组合。在这方面,每次迭代时的新添加样品可以同时使用估计的基于KPCA的子空间,并优化在该子空间上建立的GPR模型,这在某种程度上减轻了“维度的维度”,并逐步改善了低维GPR模型提供的失败概率估计。为了证明所提出的方法的有效性,研究了两个数值例子,涉及具有隐式性能功能的桁架结构的高维,非线性,显式性能功能和静态/动态可靠性分析。数值结果表明,该方法具有高维可靠性问题的精度和效率。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号