首页> 外文期刊>Computers & Structures >Prediction of aeroelastic response of bridge decks using artificial neural networks
【24h】

Prediction of aeroelastic response of bridge decks using artificial neural networks

机译:使用人工神经网络预测桥甲板的空气弹性响应

获取原文
获取原文并翻译 | 示例

摘要

The assessment of wind-induced vibrations is considered vital for the design of long-span bridges. The aim of this research is to develop a methodological framework for robust and efficient prediction strategies for complex aerodynamic phenomena using hybrid models that employ numerical analyses as well as meta-models. Here, an approach to predict motion-induced aerodynamic forces is developed using artificial neural network (ANN). The ANN is implemented in the classical formulation and trained with a comprehensive dataset which is obtained from computational fluid dynamics forced vibration simulations. The input to the ANN is the response time histories of a bridge section, whereas the output is the motion-induced forces. The developed ANN has been tested for training and test data of different cross section geometries which provide promising predictions. The prediction is also performed for an ambient response input with multiple frequencies. Moreover, the trained ANN for aerodynamic forcing is coupled with the structural model to perform fully-coupled fluid-structure interaction analysis to determine the aeroelastic instability limit. The sensitivity of the ANN parameters to the model prediction quality and the efficiency has also been highlighted. The proposed methodology has wide application in the analysis and design of long-span bridges. (C) 2020 Elsevier Ltd. All rights reserved.
机译:对风致振动的评估被认为对长跨度桥梁设计至关重要。本研究的目的是利用使用数值分析以及元模型的混合模型来开发用于复杂空气动力学现象的鲁棒和有效的预测策略的方法论框架。这里,使用人工神经网络(ANN)开发了一种预测运动诱导的空气动力力的方法。该ANN在经典配方中实施并用综合数据集培训,该数据集是从计算流体动力学强制振动模拟中获得的。 ANN的输入是桥接部分的响应时间历史,而输出是运动引起的力。已经过开发的ANN测试了用于培训和测试数据的不同横截面几何形状,其提供有希望的预测。还对具有多个频率的环境响应输入执行预测。此外,用于空气动力学强制的训练ANN与结构模型相结合,以进行全耦合的流体结构相互作用分析以确定空气弹性不稳定限制。 ANN参数对模型预测质量和效率的灵敏度也突出显示。所提出的方法在长跨度桥梁的分析和设计方面具有广泛的应用。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Computers & Structures》 |2020年第4期|106198.1-106198.20|共20页
  • 作者单位

    Bauhaus Univ Weimar Inst Struct Engn Chair Modelling & Simulat Struct Marienstr 13A D-99423 Weimar Germany;

    Bauhaus Univ Weimar Inst Struct Engn Chair Modelling & Simulat Struct Marienstr 13A D-99423 Weimar Germany;

    Bauhaus Univ Weimar Inst Struct Engn Chair Modelling & Simulat Struct Marienstr 13A D-99423 Weimar Germany;

    Bauhaus Univ Weimar Inst Struct Mech Chair Stochast & Optimizat Marienstr 13A D-99423 Weimar Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial neural network; Bridge aerodynamics; Aerodynamic derivatives; Motion-induced forces; Bridges;

    机译:人工神经网络;桥空气动力学;空气动力学衍生物;运动引起的力;桥梁;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号