首页> 外文期刊>Computers & Structures >Two novel explicit time integration methods based on displacement- velocity relations for structural dynamics
【24h】

Two novel explicit time integration methods based on displacement- velocity relations for structural dynamics

机译:基于位移 - 速度关系的结构动态的两种新型明确时间集成方法

获取原文
获取原文并翻译 | 示例

摘要

Two novel explicit time integration methods are proposed based on displacement-velocity relations in this paper for structural dynamics. They avoid the factorization of damping and stiffness matrices, and are truly self-starting due to the exclusion of acceleration vectors. The first method employs the motion equation of expanded form and a linear relation of the displacement and velocity vectors. The recommended parameters, derived from linear analysis, enable the method to possess first-order accuracy mostly and second-order accuracy in the absence of numerical and physical damping. The second method adopts the idea of composite methods, and employs two motion equations of different expanded forms per step. Theoretical analysis indicates that this method can achieve a maximum stability limit of 4, and provides a single-parameter optimal scheme, controlled by the degree of numerical dissipation, for this method. The resulting scheme is second-order accurate with the stability limit ranged from 3.5708 to 4 for the undamped case, and some numerical experiments show that it has better numerical performance compared with some up-to-date explicit methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于本文的位移速度关系提出了两种新颖的明确时间集成方法,用于结构动态。它们避免了阻尼和刚度矩阵的分解,并且由于排除加速度向量而真正自动启动。第一方法采用扩展形式的运动方程和位移和速度矢量的线性关系。推荐的参数来自线性分析,使方法能够在没有数值和物理阻尼的情况下大多主要具有一阶精度和二阶精度。第二种方法采用复合方法的思想,并且每步采用不同扩展形式的两个运动方程。理论分析表明该方法可以实现4的最大稳定性极限,并提供由数值耗散程度控制的单参数最佳方案,用于该方法。结果方案是具有稳定限制的二阶准确,范围为3.5708至4,对于未透明的情况,一些数值实验表明,与一些最新的明确方法相比,它具有更好的数值性能。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号